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School of Electrical Engineering and Computer Science, Oregon State University, Corvallis,
Oregon 97331-5501, USA

An overview of device physics-oriented electrical modeling of thin-film transistors (TFTs) is
presented. Four specific models are considered: (i) square-law, (ii) 3-layer, (iii) comprehen-
sive depletion-mode, and (iv) discrete trap. For each model, a functional assessment of model
equations is undertaken in terms of independent and dependent variables, model parameters,
physical operating parameters, and constraining inequalities in order to facilitate mapping
of model equations into a corresponding equivalent circuit. Channel mobility and “subthresh-
old” current trends are elucidated. Finally, a conductance integral equation based on Shockley’s
gradual channel approximation is introduced and is employed in model development and device
assessment.
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I. INTRODUCTION
Literature devoted to device physics assessment of thin-film

transistor (TFT) operation can be categorized into three eras, the
1960s,1−3 the 1980s,4−6 or relatively recent.7−12 These diverse
dates reflect, respectively, the birth of TFTs, the realization of
amorphous silicon TFTs for display applications, and the de-
velopment of polycrystalline silicon TFTs for display and other
applications, as well as a resurgent interest in TFTs for emerg-
ing applications involving large-area, low-cost, printed, flexible,
and/or transparent electronics.

There are several possible reasons for undertaking electri-
cal device modeling. Probably the most common device mod-
eling objective is to develop circuit-oriented SPICE models in
order to facilitate computer-aided design of circuits and elec-
tronic systems. Other objectives include understanding the phys-
ical nature of device operation and device optimization. Several
excellent references dedicated to modeling have recently been
published.11−12 These references focus specifically on amor-
phous and polycrystalline silicon TFT modeling, concentrating
on materials topics pertinent to such devices including band-tail
and localized gap states, dispersive transport, threshold voltage
metastability, diffusion current, as well as grain boundary trap-
ping, passivation, and transport. The present article does not
concern these topics as they are more pertinent to fully devel-
oped material systems and, in some cases, for example, diffusion
current, are not applicable to the wide-bandgap materials of pri-
mary interest to this article.

Rather, the objective of this review article is to present an
overview of generic device modeling of electrical properties of
a TFT from the perspective of the development of new materials
and emerging applications. Our motivation for pursuit of this
topic stems from our recent research efforts in the development

of transparent electronics. It is our experience that the type of
modeling presented herein is useful for the elucidation of non-
ideal device characteristics, which are often encountered in the
development of new TFT materials and device structures.13−18

Thus, it is our hope that the models discussed herein will find
use in the advancement of organic, oxide-based, or other types
of emerging or future TFT technologies.

This article is not a “review article” in the conventional sense
because much of what is included has never before been pub-
lished. Moreover, even when classical topics are addressed, we
have attempted to present them from a unique perspective.

The topics included in this article are as follows. Background
information, including basic device structure and operation,
an overview of the ideal square-law model, and typical non-
idealities encountered in wide band gap TFTs are discussed in
section II. A more complete discussion of the ideal square-law
model, including series resistance effects, is given in section
III. Section IV models the effects of a conductive channel. Sec-
tion V is devoted to a discrete trap model, which is useful for
elucidating many types of TFT device electrical characteristic
trends, because traps almost always play a fundamental role in
TFT operation. Additionally, the effects of the discrete trap in
establishing both subthreshold and above-threshold regimes of
operation are discussed. Channel mobility is considered in sec-
tion VI. Two types of mobility, average and incremental mobility,
are proposed as preferable replacements for the more venerable
effective and field-effect mobilities typically utilized in field-
effect transistor (FET) assessment. Simulations employing the
discrete trap model demonstrate the importance of trapping in
establishing mobility trends. Finally, the Appendix provides a
derivation of the ideal square-law model equations and discusses
the effects of series resistance, which do not significantly affect
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 103

the prototypical staggered bottom-gate, wide band gap TFTs,
but may be useful for TFTs based on other channel materials
and structures. Additionally, the conductance integral equation
is introduced and is applied to derive current-voltage equations
for both an enhancement-mode and a depletion-mode TFT. Fi-
nally, the discrete trap model equations are also derived in the
Appendix.

II. BACKGROUND
The primary objective of this section is to provide a general

background of thin-film transistors. First, several TFT device
structures and fundamental device operation are discussed. Sec-
ond, quantitative analysis of an ideal TFT is provided. Finally,
several non-idealities observed in the development of wide band
gap channel materials are discussed. However, note that non-
idealities specific to circuit design or implementation, such as
parasitic resistances, parasitic capacitances, and short-channel
effects are not considered.

A. Device Structure and Operation
Four possible TFT device structures are shown in Fig-

ure 2.1.10 Devices can be either staggered or coplanar. In a
coplanar configuration, as shown in Figures 2.1(b) and 2.1(d),

FIG. 2.1. Four general thin-film transistor configurations, including: (a) staggered bottom-gate, (b) coplanar bottom-gate, (c)
staggered top-gate, and (d) coplanar top-gate.

the source/drain contacts and the insulator are on the same side
of the channel. In such an arrangement, the source/drain contacts
are in direct contact with the induced channel such that current
flows in a single plane. In a staggered configuration, as shown
in Figures 2.1(a) and 2.1(c), the source/drain contacts are on
the opposite side of the channel from the insulator. Thus, there
is no direct connection to the induced channel. Current must
flow vertically to the induced channel before flowing horizon-
tally toward the drain. However, the contact area is very large
when a staggered structure is used, resulting in minimal contact
resistance.

In addition to coplanar and staggered configurations, TFTs
can be classified as either bottom-gate or top-gate devices. In a
bottom-gate TFT, which is sometimes referred to as an inverted
TFT, the gate insulator and gate electrode are located beneath the
channel, as shown in Figures 2.1(a) and 2.1(b). The top surface
of a bottom-gate TFT is exposed to air or passivated by coating
the top surface with a protective layer. A top-gate TFT, as shown
in Figures 2.1(c) and 2.1(d), has the gate and insulator located on
top of the channel. In a top-gate device, the channel is covered by
a gate insulator so that the top surface is inherently passivated.

Figure 2.2 shows several ideal energy band diagrams (ne-
glecting any passivation layer) as viewed through the gate of
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104 D. HONG ET AL.

FIG. 2.2. Energy band diagrams as viewed through the gate for several biasing conditions: (a) equilibrium, (b) depletion (VGS <

0 V), and (c) accumulation (VGS > 0 V).

an n-channel, accumulation-mode TFT.3 The energy band dia-
gram of Figure 2.2(a) shows the device at equilibrium, that is,
0 V applied to the source, drain, and gate. Figure 2.2(b) shows
an energy band diagram with the gate negatively biased. The
applied negative bias repels mobile electrons from the chan-
nel, leaving a depletion region near the channel/insulator inter-
face. When compared to Figure 2.2(a), this biasing condition
has reduced conductance due to a reduced number of mobile
electrons in the channel. Figure 2.2(c) shows an energy band di-
agram with the gate positively biased. The applied positive bias
attracts mobile electrons, forming an accumulation region near
the insulator–channel interface. These excess mobile electrons
lead to an increase in the conductance.

Beginning with the case shown in Figure 2.2(c), consider the
effect of an applied drain to source voltage, VDS. As VDS is in-
creased from 0 V, the channel is initially modeled as a resistor,
that is, current increases linearly with increasing VDS. How-
ever, as VDS increases, accumulation near the drain decreases.
As VDS is increased further, the region near the drain eventu-
ally begins to deplete. The voltage at which the channel re-
gion near the drain is fully depleted of electrons, or pinched
off, is denoted the saturation voltage, VDSAT. Therefore, ap-
plication of VDS ≥ VDSAT results in a saturated drain current
characteristic.

A distinguishing feature of a TFT compared to a conven-
tional metal-oxide-semiconductor field-effect transistor (MOS-
FET) is that carrier transport in the channel typically occurs in
an accumulation layer in a TFT and in an inversion layer in a
MOSFET. A TFT, just like a MOSFET, can operate as either an
enhancement-mode or a depletion-mode device. Enhancement-
mode devices are normally off, that is, negligible drain current
flows at zero gate bias. Such normally off devices dissipate less
power when in a standby mode, and also more readily facilitate
the accomplishment of digital logic and analog circuit func-
tions. This is in contrast to depletion-mode devices, which are
normally on devices; such devices are useful for certain elec-

tronic applications, for example, active-load for a logic inverter,
but, in general, are not as valuable electronic components for
designing circuits and systems.

B. Ideal Square-Law Model Overview
As discussed in the previous subsection, the current that flows

in a TFT is dependent on two applied voltages, VGS and VDS. For
an ideal transistor, the drain current is described by the square-
law model equations.2,19 For drain voltages less than VDSAT, the
ideal square-law model states that

ID = ZµCG

L

[
(VGS − VON)VDS − V 2

DS

2

]
,

(VDS < VDSAT) [2.1]

where ID is the drain current, Z is the channel width, L is the
channel length, µ is the mobility, VON is the turn-on voltage, and
CG is the gate capacitance per unit area. When VDS greater than
VGS − VON is applied, the channel is pinched off and the drain
current is saturates at

IDSAT = ZµCG

2L
(VGS − VON)2 .(VDS ≥ VDSAT) [2.2]

A complete derivation of the ideal-square law model is pre-
sented in section III.A, and also in section X.B in the context of
the conductance integral equation.

Equations 2.1–2.2 are the central equations constituting the
square-law model. The “square-law” designation arises from the
quadratic dependence displayed in Eq. 2.2 in which the satura-
tion current is proportional to the square of the applied gate
voltage in excess of the turn-on voltage. Those familiar with
the ideal square-law may notice that the threshold voltage, VT ,
has been replaced by VON in Eqs. 2.1 and 2.2. In this article,
VT and VON are utilized as follows. VT is the extrapolated value
from the linear portion of a pre-pinch-off ID − VGS curve, thus
giving the voltage at which appreciable current flows. VON quan-
tifies the onset of drain current conduction through the use of
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 105

FIG. 2.3. Simulated drain current-drain voltage (ID−VDS) char-
acteristics for an n-channel, depletion-mode TFT modeled using
the ideal square-law model. The dashed curve identifies a locus
of VDSAT’s. The top curve corresponds to a gate voltage of 9 V,
with the gate voltage decremented by 2 V for each subsequent
curve. Square-law model parameters employed for this simula-
tion are: VON = −5 V, CG = 70 nF/cm2, µ = 30 cm2/V-s, and
Z/L = 10:1.

the log(ID) − VGS characteristic. A more detailed discussion of
these quantities is provided in section V.B.

Several assumptions are made in the derivation of the square-
law model. The primary assumption is the gradual channel ap-
proximation. The gradual channel approximation assumes that
in the channel, the electric field perpendicular to the channel
is much greater than the electric field parallel to the channel.
This assumption allows the two electric fields to be considered
separately. The second major assumption is that charge in the
channel varies linearly with respect to applied gate bias. Finally,
it is assumed that all induced charge is due to free carriers, which
have a uniform mobility.

The most fundamental attribute of a TFT is its set of ID −VDS

characteristics. Figure 2.3 illustrates ID −VDS behavior for vary-
ing values of VGS simulated using the ideal square-law model.
Several aspects of these characteristics merit consideration.

First, this TFT operates in depletion-mode, as evident from
the fact that an appreciable current flows (sixth curve from the
top) even when no gate voltage is applied. Enhancement-mode
operation, in which negligible current flows until a sufficiently
large positive voltage is applied to the gate (i.e., VON > 0 V), is
preferable to depletion-mode behavior because circuit design is
easier and power dissipation is minimized when normally off,
enhancement-mode devices are employed.

Second, each ID − VDS curve is comprised of a pre-pinch-off
or triode regime, described by Eq. 2.1, and a post-pinch-off or
saturation regime at which the current is constant with respect
to VDS and is given by Eq. 2.2. These two operating regimes
intersect at VDS = VDSAT = VGS − VON, which corresponds to
the minimum drain voltage at which the entire channel thickness
near the drain is depleted of free carriers.

Third, the ideal device shown in Figure 2.3 exhibits “hard
saturation,” as witnessed by the fact that the slope of each ID

curve is zero in the post-pinch-off or saturation regime. Hard
saturation indicates that the entire thickness of the channel is
depleted of free carriers. Hard saturation is desirable for most
circuit applications, because a transistor exhibiting this property
possesses large output impedance.

A fourth and final aspect of Figure 2.2 that warrants comment
involves the magnitude of the current. A large ID is always de-
sirable. An assessment of Eq. 2.2 indicates that there are three
primary ways to increase ID . First, modifying the TFT geom-
etry by increasing the magnitude of Z/L increases ID . Second,
increasing the gate dielectric constant, and hence the gate ca-
pacitance, CG , results in more current. Finally, a higher mobility
yields higher current.

C. Model Non-Idealities
Several non-idealities must be considered in order to accu-

rately model the current-voltage characteristics of a wide band
gap TFT.

First, it is possible that series resistance at the source and/or
the drain can lead to a decrease in the drain current and to a con-
comitant apparent decrease in the channel mobility. In practice,
we usually find series resistance to be of negligible importance
in determining the operation of a wide band gap TFT. However,
for completeness, series resistance effects related to the drain
current and to the mobility are considered in sections III.C and
VI.D, respectively.

Second, if a high “bulk” carrier concentration is present in the
channel of a TFT, the induced charge density does not vary lin-
early with respect to the applied gate voltage, as assumed in the
ideal square-law model. This conductive channel case is treated
in section IV in terms of the 3-layer model and, more accurately,
the comprehensive depletion-mode model. The comprehensive
depletion-mode model is developed in the context of the con-
ductance integral equation, as described in section X.B.

Third, traps play a critical role in determining TFT operation.
Trapping of carriers injected into the channel is responsible for
many subthreshold and above-thresehold trends, as presented
in sections V.B and V.C, respectively, in the context of the dis-
crete trap model, as previously introduced by Sze.3 Additionally,
carrier trapping leads to mobility degradation, as discussed in
section VI.E.

Fourth, many TFT current-voltage non-idealities involve the
channel mobility. We contend that the use of average and in-
cremental mobility instead of effective and field-effect mobility
results in less ambiguity when trying to understand channel mo-
bility trends. These and other mobility issues are discussed in
section VI. As already mentioned, series resistance or trapping
degrade the apparent or actual channel mobility, respectively,
as described in sections VI.D and VI.E. Additionally, an unpat-
terned channel layer results in fringing current flowing around
the channel edges of a TFT. This leads to possible overestimation
of the channel mobility, as considered in section VI.F. Finally,
surface roughness scattering can affect the mobility of carriers
in the large applied gate bias regime. This effect, although not
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106 D. HONG ET AL.

directly considered in this article, can easily be taken into ac-
count, either as a model refinement or using empirical data, via
the conductance integral equation introduced in section X.B.
Moreover, the conductance integral equation can be used to de-
velop new model equations that account for any arbitrary con-
ductance effect.

III. SQUARE-LAW MODEL
A. Model Derivation

In 1963, Borkan and Weimer20 published their analysis of
TFT device behavior based on Shockley’s gradual channel ap-
proximation analysis of the junction field-effect transistor. The
essence of this gradual channel approximation is as follows.
Field-effect transistors inherently pose a two-dimensional elec-
tric field problem, involving electric field components both par-
allel and perpendicular to the flow of current in the channel.
Shockley’s gradual channel approximation invokes the assump-
tion that the lateral change in the electric field along the channel
(y-component) is much less than the change in the electric field
perpendicular to the channel (x-component).21 By making this
assumption, the two-dimensional electric field problem simpli-
fies into two separate one-dimensional problems involving gate
voltage modulation of carriers in the channel and drain voltage-
induced transport of carriers along the channel. It is important
to note that the gradual channel approximation is only valid for
long-channel devices, where the lateral electrical field can be
neglected, and for device operation in the pre-pinch-off regime,
as defined in the following discussion.

We begin the development of the ideal square-law model
by treating the TFT gate, insulator, and semiconductor chan-
nel as an ideal metal-oxide-semiconductor (MOS) capacitor
and employing the relationship Q = C × V to determine
the total induced charge. Substituting in appropriate terms, we
obtain,

q�n(y) = CG

h
[VGS − V (y)] , [3.1]

where q�n(y) is the gate-induced charge density, CG is the
gate capacitance per unit area, VGS is the gate voltage, h is the
thickness of the semiconductor channel, and V (y) is the channel
voltage obtained at a distance “y” along the channel.

Assuming that mobility, µ, is constant along the channel and
that the channel current is dominated by drift, the drain current,
ID , is given by,

ID = h Z [σo + σ (y)] ξ (y), [3.2]

where Z is the channel width, ξ (y) is the electric field along the
channel, σo is the channel conductivity at zero gate bias, and σ (y)
is the channel conductivity due to the induced charge density.
The drain current may be rewritten by noting that σ = qµn,
resulting in,

ID = h Zqµ [no + �n(y)] ξ (y), [3.3]

where no is the initial carrier density in the semiconductor and
�n(y) is the gate-induced carrier density. Substituting Eq. 3.1
into Eq. 3.3 and expressing the electric field in terms of the
voltage drop along the channel yields,

ID = ZµCG

[
qhno

CG
+ VGS − V (y)

]
dV (y)

dy
. [3.4]

Operating on both sides of Eq. 3.4 by dy and then integrating
over the length of the channel, L , we obtain,

ID

∫ L

0
dy = ZµCG

∫ VDS

0

[
qhno

CG
+ VGS − V (y)

]
dV (y). [3.5]

Performing the integrations specified in Eq. 3.5 and dividing by
L yields,

ID = ZµCG

L

[
(VGS − VON)VDS − V 2

DS

2

]
, [3.6]

where the turn-on voltage, VON, is given by,

VON = −qhno

CG
. [3.7]

It is important to note that Eq. 3.6 is only valid when
VGS ≥ VON and when the drain voltage is less than that re-
quired to pinch-off the channel, that is, when VDS ≤ VGS − VON.
Equation 3.6 is not applicable in either cut-off, that is, when
VGS < VON or in saturation, that is, when VDS ≥ VGS − VON.
Saturation is specified to occur when the channel is pinched off,
given by the conditionVDS = VDSAT = VGS − VON, which when
substituted into Eq. 3.6 yields,

IDSAT = ZCGµ

2L
(VGS − VON)2 . [3.8]

Equations 3.6–3.8 are the central equations constituting the
square-law model. The “square-law” designation arises from the
quadratic dependence displayed in Eq. 3.8 in which the satura-
tion current is proportional to the square of the applied gate
voltage in excess of the turn-on voltage.

A complete description of the square-law model is given in
Table 3.1. Three regimes of TFT operation are indicated: cut-off,
pre-pinch-off (typically denoted “triode”), and post-pinch-off
(typically denoted “saturation”). The corresponding constraint
relations correspond to the gate voltage with respect to VON and
the drain voltage with respect to VDSAT.

An important function of a device physics–based model, such
as the square-law model specified in Table 3.1, is associated with
its utility for circuit simulation. Development of a circuit simu-
lation model requires mapping of device physics equations into
an appropriate equivalent circuit. To accomplish this mapping in
a systematic manner, it is useful to identify the independent and
dependent model variables (IV, DV), model parameters (MP),
and physical operating parameters (POP) and to then specify
them in the following functional form,

DV(IV,
1IV2, . . . ; MP1, MP2, . . . ; POP1, POP2), [3.9]
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改写为h*q*Δn(y)=C[Vgs-V(y)]
y处电荷密度Δn(y)乘以y处长度h，得到电荷变化量Q

V(y)表示在y点处的电位（V(0)=Vs），Vgs=Vg-Vs，因此Vgs-V(y)表示栅极到y点的电压，即电容电压


单位面积的电流密度j=σE
面积S = hZ
电导率σ=初始电导率σ0+栅压诱导电导率变化率σ(y)
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TABLE 3.1
Summary of the square-law model

Variable designation Equation

Turn-on voltage VON = −qhno

CG

Pinch-off condition VDSAT = VGS − VON

Regime of operation Equation Constraints

Cut-off ID = 0 VGS < VON

Pre-pinch-off ID = ZµCG

L [(VGS − VON)VDS − V 2
DS
2 ]

VGS ≥ VON

VDS ≤ VDSAT

Post-pinch-off IDSAT = ZµCG

2L (VGS − VON)2 VGS ≥ VON

VDS > VDSAT

Model parameters Geometrical-based Z, L, h, CG

Channel-based n0, µ

Employing this procedure to square-law theory yields,

ID (VGS, VDS; Z , L , n0, h, CG, µ; none) . [3.10]

Expressing the square-law model in this functional form allows
one to quickly discern the two independent variables, six model
parameters, and zero explicit physical operating parameters. (It
could be argued that n0 and µ implicitly depend on temperature,
at least in a real device, so that temperature should be considered
to be an implicit physical operating parameter.)

Note that, in general, the number of model parameters is not
unique because a model may be expressed in various forms. For
example, a circuit engineer would typically combine, µ and CG

into one model parameter, thus reducing the number of model
parameters. Model parameter specification is usually driven by
the objective of the modeler. In the context of this review ar-
ticle, our primary motive is to elucidate TFT device physics
operation. Therefore, we typically avoid model parameter com-
pression since it tends to obscure the operating physics. As indi-
cated in Table 3.1, model parameters can also be sub-categorized
based on whether they involve device geometry or properties of
the materials comprising the device.

In order to map a device physics-based model into an ap-
propriate equivalent circuit, identification of independent and
dependent variables in a functional format is essential. Thus,
establishing ID (VGS, VDS) in the square-law model facilitates
identification of a nonlinear, voltage-controlled current source
as an appropriate equivalent circuit element. Two voltages, VGS

and VDS control ID . ID is, in general, nonlinear with respect to
VGS or VDS as evident from Eqs. 3.6 and 3.8.

If a corresponding, but more complicated, device physics–
based development is undertaken with respect to TFT
capacitance-voltage (C-V) characteristics, it would require the
incorporation of two additional nonlinear, voltage-controlled ca-
pacitors into the square-law, TFT equivalent circuit. Such an
equivalent circuit is indicated in Figure 3.1. Because our pri-
mary modeling focus involves DC ID − VDS and ID − VGS as-
sessment, we do not include C-V modeling in this review ex-

cept with respect to specification of equivalent circuits for the
models discussed herein. However, it should be recognized that
inclusion of these nonlinear, voltage-controlled capacitors are
required for AC or transient modeling of TFTs.

B. Simulation Results
Figure 3.2 shows simulated ID characteristics using the ideal

square-law model. In Figure 3.2(a), the ID − VDS characteristic
(VGS is decreased from 9 to −3 V in 2 V steps) is shown. This
simulation results in ∼2 mA maximum current drive. In Figure
3.2(b), ID − VGS curves with VDS = 1 V, employing channel
mobilities of 10 and 30 cm2/V-s are shown. Not only does the
mobility affect the magnitude of the current at a given VGS value,
but it also changes the slope. Note that in the ideal case shown
here, abrupt drain current turn-on at VON is observed. Moreover,
for this ideal situation, VT is equivalent to VON ∼–5 V because
the effect of carrier trapping, which is considered in section V,
is neglected here.

C. Series Resistance Effects
We begin our analysis of series resistance effects with the

square-law model derived in the previous sub-section. Building
on the square-law equivalent circuit model, resistors RD and RS

are added at the source and the drain, as indicated in Figure 3.3.

FIG. 3.1. An equivalent circuit consisting of two nonlin-
ear, voltage-controlled capacitors and a nonlinear, voltage-
controlled current source corresponding to the square-law model
specified by Table 3.1.
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108 D. HONG ET AL.

FIG. 3.2. Simulated (a) ID − VDS and (b) ID − VGS curve characteristics using the ideal square-law model. For the (a) ID − VDS

characteristic, VGS is decreased from 9 to −3 V in 2 V steps. The (b) ID − VGS characteristics use VDS = 1 V and µ =10 and 30
cm2/V-s for the grey and black curves, respectively. Square-law model parameters employed for this simulation are: VON = −5 V,
CG =70 nF/cm2, Z/L = 10:1, and µ = 30 cm2/V-s (unless otherwise specified).

The addition of the series resistors results in ID equations
for the pre- and post-pinch-off regimes as follows. For the pre-
pinch-off regime ID is given by,

ID = ZCGµ

L

(
V ′

GS − VON − V ′
DS

2

)
V ′

DS

= ZCGµ

L

(
VGS − ID RS − VON −

(
VD − ID(RS + RD)

2

))
× (VD − ID (RS + RD)) [3.11]

where the primed quantities VGS’ and VDS’ represent internal
voltages across the TFT from the gate-to-source and drain-to-
source, respectively. The corresponding drain current equation
for the post-pinch-off regime becomes,

ID = ZCGµ

2L
(V ′

GS − VON)2

= ZCGµ

2L
(VGS − ID RS − VON)2 [3.12]

The modified pinch-off condition is given by

VDSAT = VGS − VON + ID RD. [3.13]

FIG. 3.3. Square-law model equivalent circuit for a TFT that
includes the effects of source and drain series resistance. Primed
quantities represent internal voltages.

A complete derivation of the series resistance equations, that
is, Eqs. 3.11–3.13, is given in section IX.A.

A summary of the variables, equations, regimes of operation,
constraints, and model parameters constituting the square-law
model with the addition of series resistance is presented in Ta-
ble 3.2.

It is evident from the model equations given that incorpo-
ration of RS and RD into the square-law model leads to a re-
duction in the drain current due to a concomitant decrease in
effective terminal voltages. Additionally, comparing the pinch-
off condition given in Eq. 3.13 reveals that VDSAT has increased
when compared to the ideal square-law model (excluding series
resistance).

Figure 3.4 shows an example simulation which illustrates the
effect of series resistance, RSERIES, on an ID − VDS curve. In this
simulation, RSERIES = RS + RD and RD = RS . The two limits,
RSERIES = 0 (top-curve) and RSERIES = ∞� (bottom-curve),
are shown, as well as several intermediate values. At RSERIES =

FIG. 3.4. Simulated ID −VDS curves for varying values of series
resistance. Parameters used for this simulation are: VGS = 30 V,
RSERIES = RS + RD and RS = RD . RSERIES = [0 �, 10 k�, 100
k�, 1 M�, ∞�]. Z/L = 10, h = 100 nm, CG = 7 × 10−7

F/cm2, n0 = 1014 cm−3, and µ = 10 cm2/V-s.
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 109

TABLE 3.2
Summary of the square-law model with series resistance incorporated

Variable definition Equation

Turn-on voltage VON = −qhno

CG

Pinch-off condition VDSAT = VGS − VON + ID RD

Regime of operation Equation Constraints
Cut-off ID = 0 VGS < VON

Pre-pinch-off ID = ZCGµ

L (V ′
GS − VON − V ′

DS
2 )V ′

DS
VGS ≥ VON

VDS ≤ VDSAT

Post-pinch-off ID = ZCGµ

2L (V ′
GS − VON)2 VGS ≥ VON

VDS > VDSAT

Model parameters Geometrical-based Z , L , h, CG

Channel-based n0, µ

Series resistance-based RS, RD

0, the ID − VDS curve follows the ideal square-law model. As
RSERIES increases, an increasing fraction of the applied voltage is
dropped across the parasitic series resistors, thereby internally
biasing the TFT at a lower effective voltage, resulting in less
current drive. Additionally, the voltage corresponding to pinch-
off, which establishes the onset of saturation of an ID − VDS

curve, increases with increasing series resistance (e.g., VDSAT =
30, 30.15, 31.4, 38.3, 49.5, 57 V for RSERIES = 0, 1 k, 10 k,
100 k, 1 M, 10 M�, respectively). Thus, ID does not saturate
over the domain of VDS shown in Figure 3.3 when RSERIES > 1
M�. The limiting case of corresponds to all of the voltage being
dropped across RD and RS , so that V ′

GS and V ′
DS are zero. Thus,

the ID − VDS curve shows negligible current conduction when
RSERIES = ∞�.

Figure 3.5 shows the effect of series resistance on an ID −
VGS curve using the same values for RSERIES as employed for
Figure 3.5. It is evident from Figure 3.5 that the slope of the
ID −VGS curve decreases with increasing series resistance. Note
also that this slope increases nonlinearly with respect to VGS.

FIG. 3.5. Simulated ID −VGS curves for varying values of series
resistance. RSERIES = RS + RD and RD = RS . VDS = 1 V.
RSERIES = [0 �, 10 k�, 100 k�, 1 M�, ∞�]. Z/L = 10, h =
100 nm, CG = 7 × 10−7 F/cm2, n0 = 1014 cm−3, and µ = 10
cm2/V-s.

This ID−VGS trend results in a severe degradation of the apparent
mobility.

As mentioned previously, we typically find series resistance
to be of negligible importance in determining the operation of
wide band gap, inorganic oxide TFTs, however, the analysis pro-
vided here may be useful for elucidating the effects of reduced
device dimensions.

IV. CONDUCTIVE CHANNEL MODELS
The ideal square-law model presented in section III provides

an excellent framework for the development of more adaptable
models. In this section, the 3-layer and comprehensive depletion-
mode models are introduced to account for channels with an ap-
preciably high carrier concentration. The 3-layer model provides
an extremely simple means of modeling a conductive channel
by adding two additional conduction paths, in parallel with the
gate-induced channel current. Due to the simplicity of the 3-layer
model, however, it has several deficiencies; these deficiencies are
addressed in the comprehensive depletion-mode model.

A. 3-Layer Model Overview
Figure 4.1 illustrates the 3-layer model. Two additional con-

duction paths are included in Figure 4.1 in addition to the “nor-
mal” drain current component, ID,IND, which corresponds to
the gate-induced current path developed in section III in the
square-law model. The two additional conduction paths (bulk
and surface) are modeled as resistors. Current flowing through
the “bulk” portion of the channel, ID,BULK, is associated with a
uniform bulk resistance of the channel,

RBULK = L

qµNDh Z
[4.1]

where ND is the bulk carrier concentration. ID,SURFACE is as-
sociated with RSURFACE and accounts for the possibility that an
accumulation layer is present at the channel surface, where “sur-
face” is used to denote the channel interface opposite to that
of the semiconductor/insulator interface. Figure 4.2 illustrates
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110 D. HONG ET AL.

FIG. 4.1. A schematic of the 3-layer model for a simplified
bottom-gate TFT with an n-type channel.

an energy band diagram showing the formation of a surface
accumulation layer at zero-bias for a bottom-gate TFT with an
n-type channel. The semiconductor/insulator interface is ide-
alized in Figure 4.2, neglecting any gate-semiconductor work
function difference and interface state effects.

Mapping the model parameters into an equivalent circuit, in
the same way as demonstrated in section III.A, yields,

ID (VGS, VDS; Z , L , n0, h, CG, µ, µSURFACE, RSURFACE; none) ,

[4.2]

where µ and µSURFACE represent the semiconductor/insulator
interface and the surface mobilities respectively, and RSURFACE

represents the resistance of the surface accumulation layer. An
equivalent circuit appropriate for the 3-layer model is given in

FIG. 4.2. Energy band diagram for an n-type TFT with a surface
accumulation layer.

FIG. 4.3. An equivalent circuit for the 3-layer model.

Figure 4.3. Note that ID,IND is a voltage-controlled current source
that (implicitly) depends on VGS and VDS.

A summary of the variables, equations, regimes of opera-
tion, constraints, and model parameters constituting the 3-layer
model is presented in Table 4.1. Only two additional parame-
ters, µSURFACE and RSURFACE, are required to specify the 3-layer
model in addition to those employed in the square-law model.

B. Application of the 3-Layer Model Applied to SnO2

Transparent Thin-Film Transistors
With the addition of RBU L K into the square-law model, a

large initial carrier concentration can have a dramatic effect on
ID −VDS curves, as shown in Figure 4.4. Figure 4.4(a)–(d) show
the effect of different values of ND , and therefore RBU L K , on
the ID − VDS curves. The simulation shown in Figure 4.4(a),
with a carrier concentration of 1020 cm−3, essentially behaves
as a simple linear resistor with a bulk resistance of 2.5 k�. Con-
sequently, nearly all of the current in this device flows through
the bulk, resulting in linear ID − VDS curves with negligible gate
voltage modulation. Figure 4.4(b) displays a very small amount
of gate voltage modulation in the ID − VDS curves, whereas Fig-
ure 4.4(c) is beginning to behave similar to an ideal transistor.
Thus, as ND decreases, the percentage of the drain current that
is attributed to gate-induced current (ID,IND) increases, result-
ing in more effective gate modulation in the ID − VDS curves.
However, “hard” saturation of the ID − VDS curves is not ob-
tained in any case, including Figure 4.4(d). The lack of “hard”
saturation is in contradistinction to characteristics exhibited by
real TFTs. This is a limitation of the 3-level model. By mod-
eling the bulk and surface conduction paths as resistors, it is
implicitly assumed that these conduction paths cannot be af-
fected by the applied gate voltage. Moreover, it is implicitly as-
sumed that the channel cannot be fully depleted. For real TFTs
with VON as low as ∼–10 V, drain current saturation is observed
provided that the drain voltage is sufficiently large to obtain
pinch-off.

Figure 4.5 shows measured ID − VDS characteristics for a
SnO2 TTFT with a simulated fit using the 3-layer model. The
high initial carrier concentration results in non-saturating char-
acteristics for the applied voltage range, as evident from Figure
4.5. Notice that the 3-layer model provides a reasonable fit to
the measured data at high gate voltages. As VGS is decreased
and approaches VON (which is calculated to be ∼–17 V), the
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 111

TABLE 4.1
Summary of the 3-layer model

Variable designation Equation

Turn-on voltage VON = −qhND

CG

Pinch-off condition VDSAT = VGS − VON

Bulk Resistance RBULK = L
qµNDh Z

Regime of operation Equation Constraints
Cut-off ID = VDS

RBULK
+ VDS

RSURFACE
VGS < VON

Pre-pinch-off ID = ZµCG

L [(VGS − VON)VDS − V 2
DS
2 ] + VDS

RBULK
+ VDS

RSURFACE

VGS ≥ VON

VDS ≤ VDSAT

Post-pinch-off ID = ZµCG

L (VGS − VON)2 + VDS
RBULK

+ VDS
RSURFACE

VGS ≥ VON

VDS > VDSAT

Model parameters Geometrical-based Z, L, h, CG

Channel-based n0,µ
Surface-based µSURFACE, RSURFACE

3-layer model fit deteriorates. This deterioration is due to the
fact that the 3-layer model assumes that the channel cannot be
fully depleted. Therefore, the 3-layer model should be limited to
qualitative (rather than quantitative) modeling to elucidate ba-
sic device operation. To alleviate the deficiencies of the 3-layer
model, depletion near the drain must be accounted for, as accom-
plished in the comprehensive depletion-mode model, which is
introduced in the next sub-section.

FIG. 4.4. Simulated ID − VDS curves for varying values of the channel carrier concentration n0. Plots (a)–(d) represent varying
carrier concentrations of 1020, 1019, 1018, 1017 cm−3 and result in VON ∼–230, −23, −2.3, −0.2 V, respectively. Model parameters
used in this simulation: Z/L = 5, h = 100 nm, CG =7 × 10−7 F/cm2, µ = 0.5 cm2/V-s, RSURFACE = 109�.

C. Comprehensive Depletion-Mode Model
The comprehensive depletion-mode model presented in this

sub-section addresses the deficiencies of the 3-layer model. A
full derivation22−24 of the comprehensive depletion-mode model
is presented in section X.B.

Consider the nature of operation of an n-channel, depletion-
mode TFT. When a positive gate voltage is applied, an accumula-
tion layer forms at the insulator/semiconductor interface. When
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112 D. HONG ET AL.

FIG. 4.5. Measured ID − VDS curves (open circles) for a SnO2

TTFT with a fit to the data (continuous lines) using the 3-layer
model. VGS is decreased from 20 V (top curve, showing max-
imum current) to −10 V in 5 V increments. Model parame-
ters used in this simulation: ND = 1.3 × 1018 cm−3, Z/L =
5, h = 60 nm, CG =7 × 10−8 F/cm2, µ = 0.5 cm2/V-s, and
RSURFACE = 109�.

a negative bias is applied to the gate, the interface is in depletion,
but it is still possible for current to flow. When VG < VON, no
current flows. The regions of operation just described are sum-
marized in the channel conductance-gate voltage (GLIN

D − VG)
characteristic shown in Figure 4.6, where GLIN

D designates that
the channel conductance is evaluated in the linear region (VDS →
0 V).

Two transitions are evident from the dashed lines in
Figure 4.6. The first transition, from the zero region to
the depletion region, is established by the turn-on voltage,
VON,

VG
(

GLIN
D

∣∣
DEPL = 0

) ≡ VON = VP − q NDh

CG
. [4.3]

FIG. 4.6. GLIN
D − VG plot for an idealized depletion-mode TFT.

Notice that the first term on the right side of Eq. 4.3 represents
the pinch-off voltage, VP , which is the voltage dropped across
the semiconductor when the channel is fully depleted. VP is
given by

VP = −q NDh2

2εS
, [4.4]

where εS is the semiconductor permittivity. The second term
in Eq. 4.3 is the voltage dropped across the insulator when the
channel is fully depleted. Because VP is a negative quantity, VON

is thus, always a negative quantity, which is consistent with a
depletion-mode TFT. The second transition, from depletion to
accumulation, occurs at 0 V, assuming no semiconductor-metal
work function difference or flat-band voltage shift.

Now, consider several biasing schemes, indicated by the solid
lines in the GLIN

D − VG plots shown in Figure 4.7. Note that
the dashed lines separate the regions of operation (i.e., zero,
depletion, and accumulation). Additionally, the corresponding
TFT cross-sections are given to illustrate the nature of con-
duction. Figure 4.7(a) shows the device with applied voltages
(VON < VGS < 0 V and VON < VGD < 0 V) such that
a depletion region exists in the channel from the source to
drain. Figure 4.7(b) shows the device with applied voltages
(VGS > 0 V and VGD > 0 V) such that an accumulation region
exists in the channel from the source to the drain. Figure 4.7(c)
shows the intermediate case (VGS > 0 V and VON < VGD ≤
0 V) in which the channel is partially depleted and partially
accumulated.

First, consider the depleted channel case indicated in Figure
4.7(a). A depletion region exists in the channel from the source
to the drain, when both VGD and VGS are between VON and zero
volts. Next, consider the accumulated-channel case shown in
Figure 4.7(b). The channel near the source is accumulated when
VGS > 0 V and the channel near the drain is accumulated when
VGD > 0 V. In this case, the depletion-mode model accounts for
the appreciable bulk carrier concentration by the addition of a
resistor in parallel with ID,IND. If the drain voltage is increased,
such that VGD decreases below 0 V, the channel near the drain
is partially depleted, resulting in the situation shown in Figure
4.7(c). Because both an accumulation region and a depletion
region exist along the length of the channel, both regions must
be accounted for when calculating the channel conductance.
Thus, the cases illustrated in Figure 4.7(a)–(c) correspond to
the depletion (DEPL), accumulation (ACC), and accumulation-
depletion (ACC-DEPL) regimes of TFT operation, respec-
tively. The ID − VDS characteristics for these regimes, as well
as, the depletion-saturation (DEPL-SAT) and accumulation-
saturation (ACC-SAT) regimes are shown and identified in
Figure 4.8.

Table 4.2(a) and (b) summarize the variables, definitions,
and central equations constituting the comprehensive depletion-
mode model. Additionally, the governing VDS and VGS con-
straint relationships for each operating regime and the model
parameters are given in Table 4.2(b).
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 113

FIG. 4.7. Depletion-mode TFT cross-section and corresponding GLIN
D −VG plot showing three operating conditions: (a) the channel

has a depletion region extending from the source to the drain, (b) the channel has an accumulation region extending from the source
to the drain, and (c) the channel is depleted near the drain and is accumulated near the source. The dashed lines separate the regions
of operation (i.e., zero, depletion, and accumulation). Thus, the magnitude of VGD and VGS (indicated by the solid lines) with
respect to VON and zero volts determine which operating region applies.

TABLE 4.2(a)
Variable definition for the comprehensive n-channel, depletion-mode TFT model

Variable designation Equation

Pinch-off voltage VP = − q NDh2

2εS

Turn-on voltage VON = VP − q NDh
CG

Saturation voltage VDSAT = VGS − VON

Channel conductance σ = µq ND

Channel capacitance CS = εS
h

ACC-DEPL accumulation current IACC = ZµCG

2L V 2
GS + Zhσ

L VGS

ACC-DEPL depletion current IDEPL = Z
L σh[(1 + CS

CG
)(VDS − VGS) − 2

3 VP ( C3
S

C3
G

− ( C2
S

C2
G

+ VGD
VP

)
3
2 )]

ACC-DEPL saturation current IDEPL2 = Z
L σh[(1 + CS

CG
)(VON) − 2

3 VP ( C3
S

C3
G

− ( C2
S

C2
G

+ VON
VP

)
3
2 )]
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114 D. HONG ET AL.

TABLE 4.2(b)
Central equations and model parameters for the comprehensive n-channel, depletion-mode TFT model

Regime of operation Equation Constraints

DEPL ID = Z
L σh[(1 + CS

CG
)VDS − 2

3 VP (( C2
S

C2
G

+ VGS
VP

)
3
2 − ( C2

S

C2
G

+ VGD
VP

)
3
2 )]

VON < VGS < 0
VDS < VDSAT

DEPL-SAT ID = Z
L σh[(1 + CS

CG
)VDSAT − 2

3 VP (( C2
S

C2
G

+ VGS
VP

)
3
2 − ( C2

S

C2
G

+ VON
VP

)
3
2 )]

VON < VGS < 0
VDS ≥ VDSAT

ACC ID = Z
L [µCG(VGSVDS − V 2

DS
2 ) + σhVDS]

VGS ≥ 0
VDS < VGS

ACC-DEPL ID = IACC + IDEPL
VGS ≥ 0
VDSAT > VDS ≥ VGS

ACC-SAT ID = IACC + IDEPL2
VGS ≥ 0
VDS ≥ VDSAT

Model parameters Geometrical-based Z , L , h, CG

Channel-based ND ,µ, εS

Figure 4.9 shows measured ID − VDS characteristics for
a SnO2 TTFT with a simulated fit using the comprehensive
depletion-mode model. Notice that the comprehensive deple-
tion mode-model is able to simulate a wider range of applied
gate bias than the 3-layer model fit to the same data shown in
Figure 4.5. The small deviation between the bottom simulated
curve of Figure 4.9 and the measured data is attributed to the
invalid constant mobility assumption employed for this simula-
tion. Measured mobility trends verify this assertion.

An equivalent circuit corresponding to the comprehensive
n-channel, depletion-mode model is given in Figure 4.10. Two
switches (S1 and S2) are used to select which of the three pos-

FIG. 4.8. ID − VDS characteristic simulated using the compre-
hensive depletion-mode TFT model of Table 3.1 using the model
parameters listed in Table 3.2. The five regimes of device op-
eration are indicated. VGS is decreased from 30 V (top curve,
showing maximum current) to −10 V in 10 V steps. Model
parameters used in this simulation: Z/L = 10, h = 80 nm,
CG = 1.7 × 10−9 F/cm2, µ = 5 cm2/V-s, and ND = 3 × 1017

cm−3.

sible channel current paths is operative. Switch S1 is controlled
by VGS, and establishes whether the channel near the source is
in accumulation (VGS > 0 V) or depletion (VGS < 0 V). Switch
S2 depends on VG D, and determines whether the channel near
the drain is in accumulation (VGD > 0) or depletion (VGD <

0). The current path on the left corresponds to the ACC regime
(VGS > 0 V and VGD > 0 V), which includes a bulk resistance
in parallel with the gate-induced current; this operating regime
is equivalent to the 3-layer model (if surface conduction is ne-
glected). The middle path corresponds to the ACC-DEPL regime
(VGS > 0 V and VGD < 0 V). Finally, the path to the right cor-
responds to the DEPL regime (VGS < 0 V and VGD < 0 V).

It can be shown that the comprehensive n-channel, depletion-
mode TFT model simplifies to the square-law model in the limit

FIG. 4.9. Measured ID − VDS curves (open circles) for a SnO2

TTFT with a fit to the data (continuous lines) using the depletion-
mode model. VGS is decreased from 20 V (top curve, showing
maximum current) to −10 V in 5 V increments. Model param-
eters used in this simulation: ND = 2.2 × 1018 cm−3, Z/L = 5,
h = 60 nm, CG = 7 × 10−8 F/cm2, and µ = 0.3 cm2/V-s.
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 115

FIG. 4.10. An equivalent circuit for the comprehensive n-
channel, depletion-mode model. The switches S1 and S2 estab-
lish which of the three channel current paths is operative, based
on the magnitude and polarity of VGS and VGD.

CS 
 CG . There are several ways to justify the limit CS 
 CG .
Perhaps the simplest justification involves recognizing that if
this limit is satisfied, all of the voltage applied to the gate of the
TFT is dropped across the insulator. This implies that the charge
induced in the channel is equal to CG(VGS − VON) so that

GLIN
D = Z

L
CG (VGS − VON) , [4.5]

which is identical to Eq. 10.16, which is used to derive the
square-law model, except that VT is replaced by VON.

V. DISCRETE TRAP MODEL
The objective of this section is to present an overview of

the discrete trap model and to elucidate the primary device
physics consequences of carrier trapping. The initial portion of
this derivation was previously introduced by Sze.3

A. Model Overview
Although it is more likely that there is a distribution of traps

over a specific energy range, a discrete trap is used here to sim-
plify mathematical analysis and to provide insight with regard to
the effect of traps on TFT performance. The discrete trap under
consideration in this model is assumed to interact only with con-
duction band electrons, not valence band holes. Therefore, it is
characterized by its ionization energy, ET , capture cross-section,
σ n , and density, NT .

Assuming that the average conduction band electron veloc-
ity and capture cross-section is constant, the rate of conduction
band trapping is a function of the empty trap density and the
density of electrons present in the conduction band. In contrast,
the rate of emission from the trap state to the conduction band
is a function of the filled trap density and the conduction band
electron density when the Fermi-level, EF , is equal ET . Mathe-
matically, the rate of conduction band trapping is expressed as,
v̄σn (NT − nt ) nc, where v̄ is the average conduction band elec-
tron velocity, (NT − nt ) is the density of empty traps, and nc

is the density of electrons present in the conduction band. The

rate of electron emission from the trap state to the conduction
band is expressed as, v̄σnnt n1, where n1 is the conduction band
electron density when EF = ET and is given by

n1 = Nce( −ET
kB T )

, [5.1]

where Nc is the effective density of states of the conduction band
and kB is Boltzmann’s constant.

When considering the Q = C×V relationship for the discrete
trap model, it is important to recognize that the total charge
induced in the channel by the application of a gate voltage is
distributed into both conduction band and trap states,

q (�nc + �nt ) = q [(nc + nt ) − (nco + nto)]

= CG

h
[VGS − V (y)] , [5.2]

where nco and nto are initial, zero-bias densities of free conduc-
tion band electrons and trapped electrons, respectively. Rear-
rangement of Eq. 5.2 leads to

q (nc + nt ) = CG

h
[VGS − V (y) − VON] , [5.3]

where VON, the turn-on voltage, is given by

VON = − qh

CG
(nco + nto) . [5.4]

Using Eq. 5.2 in conjunction with the steady-state assumption
(i.e., the conduction band trapping rate is equivalent to the trap
emission rate), the voltage along the channel can be solved for
and integrated to determine the drain current, as shown in section
X.C.

Table 5.1 summarizes the TFT discrete trap model. Note that
the VDS and VGS constraint equations, the VDSAT pinch-off equa-
tion, and the geometrical and channel-related model parameters
are all identical to those employed in the square-law model. In

TABLE 5.1
A summary of the discrete trap model

Variable designation Equation

Turn-on voltage VON = − qh
CG

(nco + nto)
Pinch-off condition VDSAT = VGS − VON

Regime of operation Equation Constraints
Cut-off ID = 0 VGS < VON

Pre-pinch-off Appendix (X.C); Eq. 10.53
VGS ≥ VON

VDS ≤ VDSAT

Post-pinch-off Appendix (X.C); Eq. 10.55
VGS ≥ VON

VDS > VDSAT

Model parameters Geometrical-based Z , L , h,CG

Channel-based µ, nco

Trap-related NT , ET , nto

Physical T
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116 D. HONG ET AL.

contrast, the pre-pinch-off and the post-pinch-off model equa-
tions, which are derived in section X.C, are more complex due
to the inclusion of discrete trap effects.

B. Simulation Results: Subthreshold Current
Considerations

The previously discussed models have not explicitly consid-
ered the threshold voltage, VT , or subthreshold current, that is,
the drain current obtained when the gate voltage is less than VT .
Before considering subthreshold current, VT must be clearly
considered and established. Here, VT is a demarcation point, es-
tablishing the onset of subthreshold current. Additionally, VT is
sometimes used to quantify the onset of drain current conduc-
tion.

When considering VT and VON, their relative effectiveness as
drain current onset parameters is an issue. Figure 5.1 illustrates
the estimation of VT via simple linear extrapolation of an ID −
VGS transfer curve for a prototypical zinc tin oxide TFT. As
shown, the extrapolated value of VT is ∼5 V. Now, consider VON,
which is evaluated using a log(ID) − VGS transfer, as shown in
Figure 5.2, and results in a value of −4 V for the same device.
VON corresponds to the initial onset of appreciable drain current
measured on a log(ID) − VGS transfer curve. This drain current
onset occurs when ID is larger than the gate leakage and/or the
noise floor, which is established by the device under test and
the precision of the measurement instrumentation. It is apparent
from Figure 5.2 that VON is a more precise parameter to quantify
drain current onset than V 25

T . Thus, the authors propose the use
of VON as the preferred drain onset device electrical parameter.

The other parameters labeled in Figure 5.2 are the S param-
eter and the drain current on-to-off ratio. S is typically referred
to as the subthreshold swing, which is given by S = ∂VGS

∂ log(ID ) |min,
and characterizes the effectiveness of the gate voltage in reduc-
ing the drain current to zero. A small value of S is desirable

FIG. 5.1. Drain current-gate voltage (ID − VGS) transfer curve
for a zinc tin oxide, n-channel TFT. The threshold voltage is
estimated to be ∼5 V via extrapolation of the linear portion of
this curve. Geometrical parameters for this TFT are Z/L = 5:1
and CG = 3.45 × 10−8 F/cm2.

FIG. 5.2. Log(ID) − VGS transfer curve for a zinc tin oxide, n-
channel TFT. The voltage at which the TFT turns on is −4 V.
The previously extracted value of the threshold voltage, VT =
5 V does not correspond to any obvious drain current onset.
Geometrical parameters for this TFT are Z/L = 5:1 and CG =
3.45 × 10−8 F/cm2.

because this corresponds to a very sharp transition from on to
off. The drain current on-to-off ratio, I on - off

D , is established by the
maximum drain current and the gate leakage/noise floor. A large
I on - off

D is desirable, because this corresponds to a more effective
switch.

Now, consider the ideal log(ID) − VGS transfer curve shown
in Figure 5.3. Note that “ideal” refers to use of the ideal square-
law model, neglecting the effect of traps and of diffusion current
in establishing the subthreshold current. VT = VON, S = 0, and
I on - off

D = ∞ are obtained for the ideal square-law model, as
indicated in Figure 5.3. Ideal values for VT and S are obtained
because electron trapping in the channel and/or at channel inter-
faces is neglected. Moreover, S = 0 for this ideal TFT, whereas
S can only be as low as 60 mV/decade for a MOSFET, in which

FIG. 5.3. Log (ID) − VGS transfer curve simulation using the
square-law model. In this ideal case, S = 0 V/decade, VT = VON,
and the drain current on-to-off ratio is infinite. For this simulation
VDS = 100 mV, Z/L = 6:1, h = 20 nm, CG = 6.04 × 10−8

F/cm2, µ = 100 cm2/V-s, and no = 1 × 1017 cm−3.
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 117

FIG. 5.4. ID − VGS and log(ID) − VGS transfer curves simulated using the discrete trap model. For this simulation, T = 300 K,
VDS = 1 V, NT = 5 × 1017 cm−3, ET = 0.15 eV below the conduction band minimum, Z/L = 6:1, h = 20 nm, CG = 6.04 ×
10−8 F/cm2, µ = 100 cm2/V-s, and nco = 1 × 1015 cm−3.

subthreshold current is modeled as diffusion current.26 I on - off
D is

infinite because the ideal square-law model ignores gate leakage
and instrumentation noise. Thus, assessment of S and I on - off

D re-
quire “real world” considerations involving traps and gate leak-
age/measurement noise to be taken into account.

Figure 5.4 shows simulated ID − VGS and log(ID) − VGS

transfer curves for a TFT using the discrete trap model. From
Figures 5.4(a) and 5.4(b), VT is estimated via linear extrapolation
as ∼2.5 V and VON is estimated to be approximately −0.2 V,
respectively.

Recall that the turn-on voltage is given by

VON = − qh

CG
(nco + nto), [5.5]

where nco and nto correspond to the density of conduction band
electrons and occupied trap states at zero bias. Because nco is
chosen to be low, VON is quite small for this simulation, that is,
VON is ∼–0.2 V. A negative value of VON, as seen in this case,
requires that a negative gate voltage must be applied to remove
free and trapped electrons from the channel.

VT can also be quantitatively defined within the context of
the discrete trap model. Based on the discrete trap model, VT is
equivalent to the gate voltage required to fill all traps. This VT

is given by,

VT = qh

CG
(NT − nto) + qh

CG
(n1 − nco) [5.6a]

= VTRAP + VELECTRON. [5.6b]

VT is composed of two constituents, VTRAP and VELECTRON.
VTRAP is associated to the gate voltage required to fill the empty
traps, (NT − nto). However, VTRAP neglects the change in con-
duction band electron density with applied gate voltage. This
change is accounted for with VELECTRON. Moreover, evaluating
Eq. 5.6a using simulation parameters yields VT = 2.5 V, which
is equivalent to the estimate obtained from linear extrapolation
of Figure 5.4(a).

Returning to Figure 5.4(b), as the gate voltage increases above
VON, the drain current increases abruptly with an extremely large
slope. As EF moves closer to EC and ET , the steady-state trap
occupancy increases, because ET − EF decreases. Thus, be-
tween VON and VT , that is, −0.2 ≤ VGS ≤ 2.5 V, the slope of
the log(ID) − VGS curve is controlled by the rate of steady-state
trapping and results in a non-zero value of S; for the simulation
shown in Figure 5.4(b), S is ∼0.2 V/decade. At gate voltages
greater than VT , the Fermi level moves above the trap level, so
that ET − EF is negative and essentially all the traps are filled.
Any further increase in the gate voltage results in further accu-
mulation of free electrons in the conduction band, corresponding
to TFT operation without the influence of traps.

Comparing the log(ID) − VGS plots for a real TFT and a
simulated TFT with a discrete trap, as shown in Figures 5.2 and
5.4(b), respectively, it is apparent that the simulated curve is
dissimilar to the measured curve (i.e., the simulated curve has a
kink in the current near VT ). This discrepancy is likely due to the
discrete trap assumption (which is employed for computational
simplicity); it is likely that there is a distribution of traps over a
specific energy range.

Simulated log(ID) − (VGS − VON) transfer characteristics
for three trap densities with a constant trap depth (i.e., ET ∼
−0.15 eV) are shown in Figure 5.5. For a trap density of 1 × 1015

cm−3, VTRAP is negligible. Thus, the corresponding log(ID) curve
is close to that of an ideal TFT with no traps. However, as NT

is increased, the drain current degrades. Correspondingly, VTRAP

and S increase with increasing trap density; VTRAP−VON ∼ 0.08,
3.8, and 10.7 V and S ∼0.01, 0.3685, and 1.46 V/decade for
NT = 1 × 1015, 7 × 1017, and 2 × 1018 cm−3, respectively. S
as a function of NT is shown in Figure 5.6; S is initially very
small for trap densities less than 1 × 1017 cm−3, but increases
significantly thereafter.

The dependence of ET on S is shown in Figure 5.7 via sim-
ulation using the discrete trap model. For this simulation EF =
0.21 eV below the conduction band, as established by nco. As
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118 D. HONG ET AL.

FIG. 5.5. Simulated log(ID) − (VGS − VON) transfer curves as
a function of trap density, NT , for a TFT using the discrete trap
model. The arrow indicates the direction of increasing NT . These
curves correspond to NT values of 1 × 1015, 7 × 1017, and 2 ×
1018 cm−3 and VON values of −0.54, −3.8, −10 V, respectively.
VTRAP is represented by “∗” on each log(ID) curve. (Inset) The
transfer characteristic near VGS − VON = 0 V is shown in the
inset. For these simulations, VDS = 1 V, Z/L = 6:1, h = 20 nm,
CG = 6.04 × 10−8 F/cm2, µ = 100 cm2/V-s, and nco = 1 ×
1017 cm−3.

shown in Figure 5.7, S is small for shallow traps and increases
near EF , but then decreases then decreases beyond EF . This re-
lationship between S and ET is attributed to the trap re-emission
rate and occupancy, as discussed in the following.

Figure 5.8 shows an energy band diagram of the upper band
portion of a semiconductor at flat-band with three discrete traps
at ET 1, ET 2, and ET 3 with respect to the conduction band mini-
mum, EC . EF establishes trap occupancy. As indicated in Figure
5.8, the deepest trap at energy ET 3 is almost completely filled
with electrons, because it is located below EF . In contrast, the
shallowest trap at ET 1 traps very few electrons in steady-state

FIG. 5.6. Simulated S as a function of NT using the discrete trap
model with a constant trap depth of EC − ET = 0.15 eV. For
this simulation, VDS = 1 V, Z/L = 6:1, h = 20 nm, CG = 6.04
× 10−8 F/cm2, µ = 100 cm2/V-s, and nco = 1 × 1015 cm−3.

FIG. 5.7. Simulated S as a function of trap depth, EC − ET , at
a constant trap density of 5 × 1017 cm−3. For this simulation,
VDS = 1 V, Z/L = 6:1, h = 20 nm, CG = 6.04 × 10−8 F/cm2,
µ = 100 cm2/V-s, and nco = 1 × 1015 cm−3.

because its shallow energy depth corresponds to it having a very
large thermal emission rate, as given by

en = σnυth Nce−ET /kB T , [5.7]

where υ th is the thermal velocity. Thus, a deeper trap has a
smaller trap re-emission rate and, hence, a larger steady-state
occupancy than an otherwise identical but shallower trap; this
translates into less drain current due to more trapping for a deeper
trap (so long as ET is above EF ). In the context of the S trend
shown in Figure 5.7, a deeper trap (up to EF ) translates to a
degradation (increase) in S due to a lower trap re-emission rate.
Beyond EF , S improves (decreases) with ET , as a larger per-
centage of traps are occupied for deeper traps.

FIG. 5.8. Energy-band diagram of the upper band gap portion of
the semiconductor at flat band. Three discrete traps are present at
ET 1,ET 2, andET 3 with respect to the conduction band minimum,
EC . EF determines the trap occupancy, which is qualitatively
indicated by the fraction of the trap states occupied by electrons
(filled circles). The widths of the arrows represent the relative
rate of trap emission.
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 119

FIG. 5.9. Drain current-drain voltage (ID −VDS) characteristics
for an n-channel TFT corresponding to a gate voltage of 6 V and
a trap density of NT = 5 × 1017 cm−3. The Fermi level, EF , as
established by the initial free carrier concentration, nco, is EC

− EF = 0.21 eV. Geometrical and channel-based parameters
employed for this simulation are: Z/L = 6:1, h = 20 nm, CG =
6.04 × 10−8 F/cm2, µ = 100 cm2/V-s, and nco = 1 × 1015 cm−3.

C. Simulation Results: Above-Threshold Effects of Trap
Density and Energy Depth

Figure 5.9 demonstrates that the energy depth of a trap, ET ,
affects the TFT ID − VDS characteristics. When ET is between
EC and EF , a deeper trap results in a larger reduction in the
drain current, as shown in Figure 5.9. Although it is not shown
in Figure 5.9, when ET drops below EF , there is minimal effect
on ID . The decrease in the drain current with increasing trap
depth as shown in Figure 5.9 is attributed to a decrease in the
rate of trap re-emission, as previously discussed in the context
of Figure 5.8.

Figure 5.10 illustrates the output ID − VDS curves for dif-
ferent values of NT at VGS = 6 V and a trap depth of 0.15 eV
below the conduction band minimum. A decrease in the drain
current with increasing trap density, NT , is observed in Figure
5.10. An increase in NT causes an increase in nt , thereby reduc-
ing the free electron concentration available for conduction and
thus reducing the drain current. Moreover, a decrease in the free
electron concentration translates into a corresponding decrease
in the slope of the ID curve in the pre-pinch-off regime. A de-
crease in the ID slope at small VDS, as shown in Figure 5.10,
indicates that the average channel mobility deteriorates as the
trap density increases.

Mobility trends in the context of the discrete trap model are
more fully discussed in section VI.E.

VI. MOBILITY
In its most general sense, mobility, µ, is a linear proportion-

ality constant relating the carrier drift velocity, νd , to the applied
electric field, ξ , that is,

vd = µξ. [6.1]

FIG. 5.10. Drain current-drain voltage (ID − VDS) characteris-
tics for an n-channel TFT corresponding to a gate voltage of 6
V and a trap depth of EC − ET = 0.15 eV below the conduction
band minimum. Geometrical and channel-based parameters em-
ployed for this simulation are: Z/L = 6:1, h = 20 nm, CG =
6.04 × 10−8 F/cm2, µ = 100 cm2/V-s, and nco = 1 × 1015 cm−3.

Up to now, the channel mobility of a TFT has been treated as a
constant. Physically, there are various reasons why the channel
mobility may not be constant (e.g., interface roughness scat-
tering, velocity saturation, and electron trapping), but instead,
can vary with VDS and especially with V 27−29

GS. An ideal TFT
would have a constant mobility, independent of VGS. In con-
trast, the mobility of a real TFT usually increases above thresh-
old, and then either saturates or peaks and decreases as VGS

increases.

A. Effective and Field-Effect Mobilities
The channel mobility dependence on voltage leads to the

definition of several different kinds of mobilities, which are dis-
tinguished by the procedure employed for their estimation from
measured data. Effective mobility, µEFF, and field-effect mobil-
ity, µFE, are the two most commonly employed TFT mobilities.
Effective mobility, µEFF, is extracted from the drain conduc-
tance, gd , measured in the linear regime of operation.

Figure 6.1 illustrates the linear regime of operation of an ID

− VDS plot for a specific VGS. It is evident from this curve that
linear regime is defined with respect to VDS. Employing the pre-
pinch-off square-law model of section III.A as a starting point,
if VDS is very small (i.e., if VDS → 0 V), then an approximation
for ID in the linear regime is,

ID ≈ ZµCG

L
[(VGS − VT )VDS] . [6.2]

Note here that VT is used instead of VON so as to follow the
classical formulation of µEFF and µF E . Differentiating Eq. 6.2
with respect to VDS yields,

gd = ∂ ID

∂VDS
≈ ZµCG

L
(VGS − VT ) . [6.3]
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120 D. HONG ET AL.

FIG. 6.1. Simulated ID − VGS characteristics for an n-channel
TFT generated using the square-law model. The straight line
identifies the linear regime. Square-law model parameters em-
ployed for this simulation are: VON = −5 V, CG = 70 nF/cm2,
µ = 30 cm2/V-s, and Z/L = 10.

Solving Eq. 6.3 for mobility and identifying this as the effective
mobility yields,

µEFF = gd
Z
L CG (VGS − VT )

. [6.4]

In contrast to µEFF, which is obtained from gd , the field-effect
mobility, µFE, is derived from the transconductance, gm . Again
starting with Eq. 6.2, but this time differentiating with respect
to VGS yields,

gm = ∂ ID

∂VGS
≈ ZµCG

L
VDS. [6.5]

Solving for what is now denoted field-effect mobility gives,

µFE = gm
Z
L CG VDS

. [6.6]

Equations 6.4 and 6.6 constitute the defining relations for
effective and field-effect mobility, respectively. Note that the
gate voltage dependence of the effective mobility depends ex-
plicitly on the gate voltage and implicitly on the drain conduc-
tance, whereas the field-effect mobility depends implicitly on
the gate voltage gm , that is, µEFF(VGS) = f [VGS, gd (VGS)] and
µFE(VGS) = f [gM (VGS)].

B. Average and Incremental Mobilities
Although µEFF and µFE are extensively employed in the tech-

nical literature as estimators of TFT channel mobility, a better
approach is to use average and incremental mobility, µAVG and
µINC, respectively, for channel mobility assessment. Our prefer-
ence is based on the fact that µAVG and µINC have precise physical
interpretations, whereas µEFF and µFE do not.25

The defining relation for the average mobility is similar to
Eq. 6.4, which is used to define µEFF except that VT , is replaced
by VON, yielding,

µAVG = gd
Z
L CG (VGS − VON)

. [6.7]

FIG. 6.2. Extracted mobilities, µAVG (gray) and µINC (black),
for a zinc tin oxide TFT with VDS = 100 mV.

µAVG physically corresponds to the average mobility of the total
carrier concentration in the channel.

The defining relation for the incremental mobility, µINC, is,

µINC =
∂gd

∂VGS
Z
L CG

. [6.8]

In contrast to µAVG, µINC physically corresponds to the mobility
of the carriers that are incrementally added to the channel as the
gate voltage incrementally increases in magnitude. This physical
interpretation is based on the assumption that the mobility of
carriers already present in the channel does not change.

To better appreciate the physical significance of µAVG and
µINC, consider the measured mobility data of a zinc tin oxide
TFT, as presented in Figure 6.2. Beginning at VO N , which is
approximately equal to −3.8 V, the incremental mobility begins
to increase. The low mobility near the turn-on voltage is a result
of the fact that most of the initial carriers injected from the source
into the channel are trapped in interface states and/or in “bulk”
channel layer traps. As VGS increases, these traps are filled, such
that a smaller fraction of the incrementally added carriers are
trapped. The incremental mobility continues to increase as VGS

increases until it either saturates or where second-order effects
such as series resistance or interface roughness scattering are no
longer negligible and µINC begins to decrease. The important
point is to recognize that the µINC trend with respect to VGS is
reflective of the mobility of carriers added incrementally to the
channel.

The average mobility trend with respect to VGS, as shown
in Figure 6.2, provides an equally interesting result. µAVG(VGS)
is a moving average of µINC from VON to VGS.

25 µAVG is usu-
ally lower in value than µINC because it represents the average
mobility of all of the carriers in the channel, including carriers
localized in traps.

As a figure-of-merit, µAVG provides a better predictor of de-
vice performance for circuit applications because it takes into
account all of the carriers in the channel. In contrast, µINC is
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 121

FIG. 6.3. µAVG, extracted from an ideal ID − VGS curve simu-
lated using the square-law model. Starting with the upper curve,
VDS is 0.01, 0.1, 1 V, for each subsequent µAVG curve. Model
parameters used for this simulation: VON = 0 V, Z/L = 10, h =
100 nm, CG = 7 × 10−7 F/cm2, n0 = 1014cm−3, and µMODEL =
1 cm2/V-s.

of greater physical significance, as it is more directly correlated
with the transport physics of carriers in the channel.

For further consideration, Ref. 25 provides a more in-depth
mathematical derivation and explanation of µINC and µAVG.

C. Simulation Results: Ideal Mobility Extraction
In the ideal square-law model, mobility is assumed to be con-

stant with respect to VGS. Thus, according to this model, a plot
of mobility versus VGS should result in a step function increase
in mobility, from zero to its full value occurring at VON. Figure
6.3 shows µAVG − VGS curves which are extracted from an ideal
ID − VGS curve that are simulated using the ideal square-law
model with µMODEL = 1 cm2/V-s. The important lesson to learn
from Figure 6.3 is that µAVG cannot be accurately extracted, even
from an ideal ID − VGS curve, unless this extraction occurs at
a sufficiently small value of VDS. A corresponding mobility ex-
traction artifact is also present in a µINC −VGS curve if VDS is too
large, but is less pronounced than in a µAVG − VGS curve. These
mobility extraction artifacts arise as a result of a breakdown in
the assumption of linearity employed in Eq. 6.2.

When VGS is near VON, the linearity condition, VDS � VGS −
VON, is no longer satisfied. Beginning with the definition of
average mobility in Eq. 6.7 and noting that gd = ∂ ID

∂VDS
, the

average mobility can be expressed as,

µAVG =
∂ ID

∂VDS
Z
L CG (VGS − VON)

. [6.9]

If the linearity condition is not met, the partial derivative term
constituting the numerator of Eq. 6.9 must be assessed by dif-
ferentiating the square-law model pre-pinch-off regime ID ex-
pression (i.e., Eq. 2.1) with respect to VDS, resulting in,

∂ ID

∂VDS
= µMODELCG Z

L
(VGS − VON − VDS) . [6.10]

Inserting Eq. 6.10 into Eq. 6.9 and canceling terms yields,

µAVG = µMODEL
(VGS − VON − VDS)

(VGS − VON)
. [6.11]

Equation 6.11 provides a quantitative means of estimating the
extent of the mobility extraction artifact. It can be seen that for
values of VGS–VON 
 0VDS, µAVG ≈ µMODEL. Also, note that
when VGS–VON = VDS, µAVG = 0. This analysis demonstrates
that accurate mobility extraction requires the use of the smallest
possible value of VDS.

D. Apparent Mobility Degradation due to Series
Resistance

Real TFT curves exhibit non-idealities that are manifest as a
non-abrupt increase in mobility with increasing VGS at low VGS

or a decrease in mobility at high VGS. There are two primary
potential causes of a decrease in mobility at high VGS, inter-
face roughness scattering and series resistance. Series resistance
leads to a reduction in the “apparent” mobility, as presented in
this section.

Figures 6.4 illustrates the effect of series resistance on the
apparent incremental as a function of VGS. Figure 6.4 shows a
general trend with the apparent incremental mobility increasing
above the turn-on voltage, peaking, and then degrading. The
degradation effect is due to the fact that an appreciable fraction
of the applied voltage is dropped across the series resistors RS

and RD . As the series resistance increases, the percentage of the
applied voltage dropped across RS and RD increases, resulting in
less current conduction and, hence, a lower apparent incremental
mobility.

The mobility versus VGS trends shown in Figure 6.4 are not
representative of the true mobility of the carriers in the channel
but, rather, constitute an artifact associated with series resis-
tance. An example of a mobility degradation effect where the
degraded mobility is indicative of the true mobility of the carriers

FIG. 6.4. Simulated incremental mobility − VGS characteristics
for varying values of series resistance. Model parameters used
for this simulation: Z/L=10, h=100 nm, CG =7×10−7 F/cm2,
n0 = 1014 cm−3, and µ = 10 cm2/V-s. RSERIES = [0 �, 1 k�,
10 k�, 100 k�, 1 M�, 10 M�]. Note that RSERIES = RS + RD

and RD = RS .
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122 D. HONG ET AL.

in the channel would be interface roughness scattering. This
mobility degradation mechanism occurs when carriers, under a
large gate-to-source voltage, are pulled close to a rough insu-
lator/semiconductor interface. Scattering occurs because these
carriers interact with the uneven interface, thereby lowering their
velocities and, therefore, their mobilities.29

E. Mobility Degradation due to a Discrete Trap
This subsection explores the effects of traps on the apparent

average and the incremental mobility. µAVG and µINC are ex-
tracted from ID − VGS curves simulated using the discrete trap
model.

µINC − (VGS − VON) curves as a function of trap density,
NT , are shown in Figure 6.5. As discussed previously µINC is a
measure of the mobility of carriers differentially induced into the
channel by an incremental increase in the gate voltage. The µINC

− (VGS − VON) curve transition for NT = 1 × 1016 cm−3 is very
close to an ideal step-function transition to the bulk mobility.
As NT increases, a µINC − (VGS − VON) curve shifts along the
VGS axis and the transition is less abrupt. The voltage, VTRAP,
below which the majority of the gate voltage induced electrons
are trapped is indicated by “∗” on each of the µINC − (VGS −
VON) curves shown in Figure 6.5.

Figure 6.6 shows simulated µINC − (VGS − VON) curves as
a function of trap depth at a constant trap density of 5 × 1017

cm−3. The important trend indicated in Figure 6.6 is that the
abruptness of the transition in a µINC − (VGS − VON) curve is
steeper for a deeper trap than for a shallow trap. When a deep trap

FIG. 6.5. Simulated µINC − (VGS − VON) characteristics as a
function of trap density, NT for a trap depth EC − ET = 0.15
eV and a drain voltage VDS = 0.2 V. The asterisk (∗) on each
µINC − VGS curve corresponds to the voltage, VTRAP, that acts
as the “mobility threshold voltage” value below which most of
the induced electrons occupy the trap states. Model parameters
used for this simulation: Z/L = 6:1, h = 20 nm, CG = 6.04 ×
10−8 F/cm2, µMODEL = 100 cm2/V-s, and nco = 1 × 1015 cm−3.

FIG. 6.6. Simulated µINC − (VGS − VON) characteristics as a
function of trap depth, EC − ET for a trap density of NT = 5 ×
1017 cm−3 and a drain voltage VDS = 0.2 V. Model parameters
used for this simulation: Z/L = 6:1, h = 20 nm, CG = 6.04 ×
10−8 F/cm2, µMODEL = 100 cm2/V-s, and nco = 1 × 1015 cm−3.

fills, the Fermi level is relatively remote from EC such that there
are few filled conduction band states; µINC is correspondingly
small. However, once the trap is completely filled, the Fermi
level abruptly rises toward EC , resulting in an abrupt increase in
the density of filled conduction band states and concomitantly
in an abrupt increase in µINC. In contrast, for a shallow trap,
the Fermi level is much closer to EC such that conduction band
filling and the µINC transition is less abrupt.

Figure 6.7 shows simulated µAVG and µINC curves as a func-
tion of trap density, NT . µAVG is calculated at a drain volt-
age VDS = 0.1 V and overvoltages of 1 V and 5 V, that is,
VGS = VON+ 1 V and VGS = VON+ 5 V, respectively. µINC is
calculated at VGS = 0.2 V. Clearly above a certain trap density,

FIG. 6.7. Simulated µINC and µAVG characteristics as a function
of trap density, NT . Model parameters used for this simulation:
Z/L = 6:1, h = 20 nm, CG = 6.04 × 10−8 F/cm2, µMODEL =
100 cm2/V-s, and nco = 1 × 1015 cm−3.
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 123

FIG. 6.8. Simulated µINC and µAVG characteristics as a function
of trap depth, EC − ET . The Fermi level, EF , as established
by the initial free carrier concentration is 0.21 eV below the
conduction band minimum, EC . Model parameters used for this
simulation: Z/L = 6:1, h = 20 nm, CG = 6.04 × 10−8 F/cm2,
µBU L K = 100 cm2/V-s, and nco = 1 × 1015 cm−3.

NT ≥ 3 × 1017 cm−3 for this simulation, the mobility drastically
decreases because most of the gate-induced channel electrons
are trapped. On the other hand, when the trap concentration is
reduced to less than ∼1017 cm−3, µINC is not significantly af-
fected by traps. At a small overvoltage, µAVG is more sensitive to
the trap density, and never reaches the maximum bulk mobility
even when the trap density is very low. At a large overvoltage
and low trap density, µAVG approaches the bulk mobility, because
the density of induced conduction band electrons is significantly
larger than the trapped electron density.

Simulated µAVG and µINC curves as a function of trap depth,
EC − ET , are shown in Figure 6.8. µAVG and µINC are calculated
at a gate voltage of 1 V. The Fermi level, EF , as established by
the initial free carrier concentration, nco = 1 × 1015 cm−3 is 0.21
eV below EC . As EC − ET increases, both µAVG and µINC mono-
tonically decrease in a very similar manner until ET ∼ EF . This
trend is a consequence of the fact that a larger fraction of the
gate voltage-induced electrons occupy trap states for a deeper
trap. When ET drops below EF , both mobilities monotonically
increase, and µINC attains a maximum value, µMODEL. When all
the traps are deep and remain filled, they play no role in estab-
lishing µINC so that all of the electrons differentially induced
into the channel by an incremental increase in the gate voltage
occupy conduction band states. In contrast, µAVG is significantly
smaller than µINC because it is a measure of all the electrons in
the channel, the majority of which are trapped.

F. Unpatterned Channel, Fringing Current Artifacts
The width-to-length ratio, Z

L , is a key TFT parameter. For
a TFT that has a clearly defined channel, Z

L is given simply
as the drawn width-to-length ratio. However, when a channel
is unpatterned, peripheral current flows due to fringing electric
fields outside the drawn channel. To correct for this peripheral

FIG. 6.9. Top-down views of two TFTs, showing the current
pathways in (a) a TFT with a patterned channel and (b) a TFT
with an unpatterned channel.

current artifact, Z
L must be replaced by an effective width-to-

length ratio, Z
L

∣∣
EFF

, as derived in the remainder of this section.
Figure 6.9 shows top-down views of two different TFTs with

identical drawn widths (Z) and lengths (L) illustrating the cur-
rent pathways in each device. In Figure 6.9(a), the channel is
patterned. Thus, current (IP ) is restricted to the patterned region
between the source and drain. In Figure 6.9(b), the channel is un-
patterned. In this case, current is no longer restricted to the area
between the source and drain. In addition to IP , fringing current
(IF ) also contributes to the total current. It is evident that the
current in the TFT with an unpatterned channel is greater than
in the TFT with a patterned channel. If this fringing current is not
properly taken into account, an overestimated channel mobility
is extracted from experimental data.

Returning to Figure 6.9, it can be seen that the current in the
area between the source and drain is equivalent to IP . Numeri-
cally this current is equal to29

IP = Z

L
GSHVDS, [6.12]

where GSH is the sheet conductance and where it is assumed that
VDS is small enough that the TFT current flow can be modeled
as resistive. There is also additional current, IF , outside of the
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124 D. HONG ET AL.

area between the source and drain. An equation for IF is derived
assuming that the length of the source/drain contact is half the
magnitude of Z. The current between such a configuration and,
thus, the fringing current is given by29

IF = π

ln 2
GSHVDS. [6.13]

To find the total current in the unpatterned TFT, IF and IP are
added together, yielding

ID = IF + IP =
(

π

ln 2
+ Z

L

)
GSHVDS. [6.14]

Comparing the total current of an unpatterned device, Eq. 6.14,
to the total current of a patterned device, Eq. 6.12, only the first
terms differ. For the patterned device the first term is Z

L , whereas
it is ( π

ln 2 + Z
L ) for the unpatterned device. Thus, an effective

width-to-length ratio can be defined as

Z

L

∣∣∣∣
EFF

=
(

π

ln 2
+ Z

L

)
[6.15]

for an unpatterned device.
Returning to Eq. 6.14, notice that the first term, ( π

ln 2 + Z
L ),

is a constant which depends on the TFT geometry, whereas the
second term, GSHVDS, is a factor which depends on the current-
voltage relationship used to model the TFT. Recognizing this,
Eq. 6.14 can be generalized to

ID = f (geometric parameters)g(electrical parameters),

[6.16]

where f and g denote functions involving the TFT geometry
and the relevant current-voltage model, respectively. In Eq. 6.14,
these functions are identified as

f (Z , L) =
(

π

ln 2
+ Z

L

)
, [6.17]

assuming that the fringing current is modeled using a point-
contact geometry, and

g(VGS, VDS) = GSHVDS [6.18]

assuming that the TFT current flow is modeled as a resistor. If
TFT current flow is modeled using square-law theory2,19

g(VGS, VDS) = µCG

[
(VGS − VT )VDS − V 2

DS

2

]
. [6.19]

where µ is mobility. For this situation, if the fringing current is
modeled assuming a point-contact geometry,

IP =
(

π

ln 2
+ Z

L

)
g(VGS, VDS) ≡ Z

L EFF
g(VGS, VDS). [6.20]

Thus, Z
L |EFF, which constitutes a function of geometric param-

eters that includes fringing current in an unpatterned TFT, de-
pends only on the device geometry, but not on how the TFT
current-voltage characteristics are modeled.

FIG. 6.10. Saturation mobility as a function of Z
L for an unpat-

terned zinc oxide TFT. Three mobility trends are obtained using
the drawn Z

L (squares), a point-contact model for fringing cur-
rent (triangles), and an extracted equation for fringing current
(diamonds). Because the term π

ln 2 is equal to 4.53, the mobility
can be significantly overestimated for TFTs with small Z

L ratios.

For accurate mobility estimation of a nonpatterned TFT,
Z
L |EFF should be used instead of Z

L in mobility assessment equa-
tions such as Eqs. 6.7 or 6.8.

Mobility data obtained from the literature appears to confirm
the existence of this fringing current artifact. Figure 6.10 shows
the saturation mobility, µSAT, as a function of drawn Z

L for an
unpatterned zinc oxide TFT.30 Saturation mobility is extracted
from an ID − VGS curve, measured with the device held in sat-
uration and is calculated as29

µSAT = 2m2

Z
L CG

∣∣∣∣∣
Saturation

, [6.21]

where m is the slope of a plot of IDSAT against (VGS − VT ). Three
mobility trends are included in Figure 6.10 and are obtained
using drawn Z

L (squares), Z
L |EFF assuming a half Z contact length

geometry (triangles), and the following (diamonds)

Z

L

∣∣∣∣
EFF

=
(

20 + Z

L

)
, [6.22]

where Eq. 6.22 is deduced by changing the π
ln 2 constant in Eq.

6.15 to obtain a flat mobility curve. The solid lines are guides for
the eye, rather than least-square fits to the data. Notice that µSAT

using the drawn Z
L shows a dramatic increase as Z

L decreases; this
is unphysical. A more constant µSAT is seen by taking into ac-
count the fringing current point-contact model, although a slight
curvature still exists, indicating that the point-contact model un-
derestimates IF . An almost flat mobility curve at ∼2 cm2/V-s
is obtained using Eq. 6.22; this trend is more physically realis-
tic and underscores the importance of using a patterned chan-
nel layer in a TFT in order to avoid fringing current artifacts,
which can lead to an unrealistically large estimate of the channel
mobility.
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 125

FIG. 6.11. Coaxial source-drain layout.

A more accurate assessment of mobility for a TFT with a
blanket-coated, unpatterned channel layer is possible using the
coaxial source-drain layout shown in Figure 6.11. In this config-
uration, current flows from the inner circle contact to the outer
annulus contact, such that no fringing current artifact is possible.
For the coaxial source-drain layout, the geometrical correction
function is

f (d, D) =
(

2π

ln(D/d)

)
, [6.23]

where D is the inner diameter of the outer circle and d is the
diameter of the inner circle of the annulus.

VII. CONCLUSIONS
The goal of this review article was to provide an overview of

generic device physics–oriented TFT electrical modeling from
the perspective of the development of new materials and emerg-
ing applications. Four models were considered: (i) square-law,
(ii) 3-layer, (iii) comprehensive depletion-mode, and (iv) dis-
crete trap. We hope that the models discussed herein will find
use in the advancement of current, emerging, and future TFT
technologies.
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126 D. HONG ET AL.

X. APPENDICES

A. Square-Law Model with Series Resistance
Building on the square-law model, resistors RD and RS are

added at the source and the drain, as indicated in Figure 10.1.
Internal voltages are calculated by applying Kirchhoff’s current
law to each node,

V ′
D = VDS − ID RD, and [10.1]

V ′
S = ID RS. [10.2]

Subtracting Eq. 10.1 from Eq. 10.2 results in the internal voltage
across the TFT from drain to source,

V ′
DS = V ′

D − V ′
S = VDS − ID (RD + RS) . [10.3]

Similarly, the internal voltage across the TFT from gate-to-
source is found by applying Kirchhoff’s voltage law,

V ′
GS = VGS − ID RS. [10.4]

It should be noted that the non-primed quantities, VDS and
VGS, represent the total external voltage applied across TFT ter-
minals, whereas the primed quantities V ′

GS and V ′
DS are internal

voltages across TFT terminals, thus accounting for the voltage
dropped across RS and RD .

Equations 10.3 and 10.4 provide the necessary framework
from which to begin an analysis of the effects of RS and RD on
TFT performance. Inclusion of RS and RD into the equivalent
circuit reduces the internal terminal voltages to V ′

GS and V ′
DS.

We conclude our analysis by rewriting the ID −VDS equations
for the pre- and post-pinch-off regimes in terms of the primed
quantities V ′

GS and V ′
DS. Substituting Eqs. 10.3 and 10.4 into

the square-law model equations, the resulting current-voltage
equation for the pre-pinch-off regime is given by,

ID = ZCGµ

L

(
V ′

GS − VON − V ′
DS

2

)
V ′

DS

= ZCGµ

L

(
VGS − ID RS − VON −

(
VD − ID (RS + RD)

2

))
× (VD − ID (RS + RD)) [10.5]

FIG. 10.1. Square-law model equivalent circuit for a TFT that
includes the effects of source and drain series resistance. Primed
quantities represent internal voltages.

FIG. 10.2. Simplified cross-section diagram of a thin-film tran-
sistor.

whereas the corresponding equation for the post-pinch-off
regime becomes,

ID = ZCGµ

2L
(V ′

GS − VON)2

= ZCGµ

2L
(VGS − ID RS − VON)2 [10.6]

Finally, demarcation between the pre- and the post-pinch-off
regime is established by the pinch-off voltage, which for this
square-law with series resistance model is given by,

VDSAT = VGS − VON + ID RD. [10.7]

B. Conductance Integral Equation Modeling
1. Conductance Integral Equation

Figure 10.2 shows a simple bottom-gate TFT. Source and
drain contacts are idealized so that the cross-section of the chan-
nel is uniform from source to drain. The biasing scheme is as
follows: the source is grounded, VG is applied to the gate, and
VD is applied to the drain. Voltage in the channel, VC , varies
from 0 V at the source to VD at the drain. Conductivity of the
channel varies from the source to the drain and depends on both
VG and VC .

Hoffman derives a general field-effect transistor equation re-
lating current to voltage for an n-channel device as31

I = Z

L

∫ VDS

0
G(VC )dV , [10.8]

where G is the conductance of the channel as a function of
voltage along the channel.

In order to proceed further, we define VCH as,

VCH = VGS − V (y). [10.9]
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ELECTRICAL MODELING OF THIN-FILM TRANSISTORS 127

VCH is the portion of the applied gate voltage that acts to induce
or deplete charge at a given location along the channel. With the
change of variable V → VCH, Eq. 10.8 becomes

ID =
∫ VGS

VGD

G(VCH)dVCH. [10.10]

where VGD is the gate voltage measured with respect to the drain
and is equal to VGS − VDS.

Now, consider G(VCH). This term is the conductance of the
channel with respect to VCH. The function relating G to VCH

can be found by analyzing the transistor in the linear regime
of TFT operation. The linear regime occurs when VDS ∼ 0 V.
In the linear regime of operation, the channel conductivity is
approximately uniform across the channel, in accordance with
the gradual channel approximation. Therefore, the conductance
can be expressed as

G(VCH) = GLIN
D (VCH)

Z
L

, [10.11]

where GLIN
D explicitly specifies that the channel conductance

is evaluated in the linear regime of operation. Also recognize
that in the linear regime of operation, the source is at ground
potential and the drain is very close to ground potential; thus,
the entire channel is essentially grounded. Therefore, VCH is
approximately equal to the applied gate voltage VG . This being
the case, Eq. 10.11 may be approximated as

G(VCH) ≈ GLIN
D (VG)

Z
L

. [10.12]

Substituting Eq. 10.12 into Eq. 10.10 yields

ID =
∫ VGS

VGD

GLIN
D (VG)dVG . [10.13]

Equation (10.13), the conductance integral equation, asserts that
ID can be calculated for all VDS and VGS values if the drain con-

FIG. 10.3. (a) ID-VDS and (b) GLIN
D -VG characteristics of a zinc tin oxide TFT. The solid lines shown in (a) are calculated curves

from measured GLIN
D data shown in (b), using the conductance integral equation. The circles shown in (a) are measured data. VGS

is decreased from 40 V (top curve, showing maximum current) to 20 V in 10 V steps. The arrow shown in (a) indicates the slope
of the ID-VDS line at VGS = 40 V, VDS = 10 V which is equal to GLIN

D at VG = 30 V, as indicated by the solid circle shown in (b).

ductance evaluated in the linear regime is known over a suffi-
ciently wide range of VG . ID at any VGS and VDS is simply the
area under a GLIN

D − VG curve from VGD to VGS, as shown in sec-
tion X.B.2. In terms of measured quantities, GLIN

D is calculated
as

GLIN
D = ID(VGS, VDS)

VDS

∣∣∣∣
VDS→0

. [10.14]

An important modeling consequence of the conductance integral
equation is that different functional forms of GLIN

D (VG) give rise
to different mathematical forms of ID(VGS, VDS), which can be
utilized to model the effects of mobility variation with applied
gate voltage.31

A significant implication of the conductance integral equation
is that GLIN

D −VGS can be calculated from a single ID −VDS curve.
Rearrangement of Eq. 10.14 results in24

GLIN
D (VGS − VDS) = dID(VGS, VDS)

dVDS
. [10.15]

Equation 10.15 states that the slope of an ID − VDS curve evalu-
ated at VDS and VGS yields GLIN

D evaluated at VGS − VDS. This is
illustrated in Figure 10.3. The top curve shown in Figure 10.3(a)
corresponds to VGS = 40 V. The slope of this ID-VDS curve at
VDS = 10 V, as indicated by the arrow, is equal to GLIN

D assessed
at a value of VGS − VDS = 40 V − 10 V = 30 V, as indicated
in Figure 10.3(b) by the solid circle. This method for extracting
GLIN

D (VG) can aid in channel mobility estimation in situations
in which accurate GLIN

D assessment is not possible because the
linear regime of operation for an ID − VDS curve is dominated
by a barrier contact or gate leakage.

2. Enhancement-Mode Current Model
In this section, the conductance integral equation, Eq. 10.13,

is used to derive an ID(VGS, VDS) equation for an enhancement-
mode TFT. The equation derived is then shown to be equivalent
to the square-law model for a TFT.2,19 Figure 10.4 shows a
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128 D. HONG ET AL.

FIG. 10.4. GLIN
D − VG plot for an idealized transistor. The equa-

tion of this line is ZµCG

L (VG −VT ). VDS corresponds to the differ-
ence between VGS and VG D. The area of the shaded region under
the GLIN

D curve evaluated between VGS and VGD corresponds to
ID .

GLIN
D − VG characteristic for an idealized transistor, in which the

channel conductance in the linear region is modeled as32

GLIN
D = ZµCG

L
(VG − VT ), [10.16]

where µ is the carrier mobility (assumed to be constant with
respect to VGS) and VT is the threshold voltage. VGS is the applied
voltage from the gate to the source. VGD is the applied voltage
from the gate to the drain. VDS is the difference between VGD

and VGS. The shaded region corresponds to ID , as described by
Eq. [10.13].

Now consider the mathematical consequence of Figure 10.4
in conjunction with the conductance integral equation. Substi-
tuting Eq. 10.16 into Eq. 10.13,

ID =
∫ VGS

VGD

ZµCG

L
(VG − VT )dVG

= ZµCG

L

[
V 2

GS

2
− VGSVT − V 2

GD

2
− VGDVT

]
. [10.17]

Notice from Figure 10.4 that

VGD = VGS − VDS. [10.18]

Substituting Eq. 10.18 into Eq. 10.17 and collecting terms yields

ID = ZµCG

L

[
(VGS − VT ) VDS − V 2

DS

2

]
. [10.19]

This equation is valid for VGD greater than VT . Returning to
Figure 10.4, notice that for values of VG less than VT , GLIN

D is
zero and there is no area under the GLIN

D − VG curve. If VGS is
held constant, the maximum area of the shaded region is reached
when VGD = VT . At this point, the channel is pinched off and
saturation occurs so that

ID ≡ IDSAT = ZµCG

2L
(VGS − VT )2 . [10.20]

As VGD is reduced below VT , or if the gate is held constant as
VDS is increased above VGS − VT , the area of the shaded region,

ID , does not increase. ID saturates at this point. Decreasing VGD

below VT (i.e., increasing VDS above VGS − VT ) has no effect on
ID .

Note that Eqs. 10.19 and 10.20 correspond to the square-law
model pre- and post-pinch-off current-voltage characteristics for
an ideal long-channel transistor.2,19 As shown earlier, the square-
law model is derived from the conductance integral equation
assuming that channel conductance in the linear region is directly
proportional to the gate voltage.

3. Comprehensive Depletion-Mode Current Model
In this section, the current-voltage characteristics are derived

for a depletion-mode TFT. First, expressions for GLIN
D (VG) are

developed. Then, these expressions for GLIN
D (VG) are substituted

into the conductance integral equation in order to generate a
corresponding set of current-voltage relationships.

a. Depletion-mode conductance. Consider an n-channel
TFT with a channel carrier concentration ND . Application of
a positive bias to the gate induces an electron accumulation
region in the channel. In contrast, application of a negative bias
results in depletion of the channel. Because appreciable drain
current can flow in a depletion-mode TFT in both depletion and
accumulation, the channel conductance must be modeled in both
regimes of operation.

For a depletion-mode TFT, the linear regime channel con-
ductance, GLIN

D (VG), is modeled as32

GLIN
D = Z

L
µq Ne, [10.21]

where Ne is the number of mobile electrons per cm2 of gate
area. In accumulation, the electron density in the channel is
comprised of bulk electrons already present due to doping and
of electrons which are induced in the channel as a consequence
of the application of a gate voltage,32

Ne = NDh + VGCG, [10.22]

where h is the channel thickness. Thus, for a depletion-mode
TFT operating in accumulation

GLIN
D

∣∣
ACC = Z

L
µq(NDh + VGCG). [10.23]

In depletion, the electron density in the channel decreases as the
gate voltage-induced depletion region widens,

Ne = ND (h − WDE P ) , [10.24]

where WDE P is the depletion space charge width. WDE P is given
by33

WDE P =
(

ε2
S

C2
G

− 2VGεS

q ND

) 1
2

− εS

CG
, [10.25]

where εS is the permittivity of the channel. Here we define two
new terms, CS = εS

h , corresponding to the semiconductor (i.e.,
the channel) capacitance, and the pinch-off voltage, VP , which
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FIG. 10.5. GLIN
D −VG plot for an idealized depletion-mode TFT.

corresponds to the gate voltage required to completely deplete
the channel if no insulator is present and is calculated as32

VP = −q NDh2

2εS
. [10.26]

Substituting CS and VP into Eq. 10.25 and factoring out h, yields

WDE P = h

[(
C2

S

C2
G

+ VG

VP

) 1
2

− CS

CG

]
. [10.27]

Substituting Eq. 10.27 into Eq. 10.24 yields

Ne = ND

[
1 + CS

CG
−

(
C2

S

C2
G

+ VG

VP

) 1
2
]

. [10.28]

Finally, substituting Eq. 10.28 into Eq. 10.21 yields the GLIN
D

relation appropriate for a depletion-mode TFT operating in de-
pletion

GLIN
D

∣∣
DEPL = Z

L
σ

[
1 + CS

CG
−

(
C2

S

C2
G

+ VG

VP

) 1
2
]

, [10.29]

where σ is the conductivity of the channel and is calculated as

σ = µq ND. [10.30]

Equations 10.23 and 10.29 constitute the GLIN
D relations required

to generate the current-voltage characteristic equations appro-
priate for a depletion-mode TFT.

b. Depletion-mode current voltage characteristics.. Fig-
ure 10.5 shows the GLIN

D − VG characteristics of an idealized
n-channel depletion-mode TFT. Three regions of conductance
are shown; the zero region, where the conductance is zero, the
depletion region, and the accumulation region, where GLIN

D is
evaluated via Eqs. 10.29 and 10.23, respectively.

Figure 10.6 shows the cross-section and corresponding
GLIN

D − VG plots of three operating regions for an n-channel,
depletion-mode TFT. Figure 10.6(a) shows the device with ap-
plied voltages such that a depletion region exists in the channel
from the source to drain. Figure 10.6(b) shows the device with
applied voltages such that an accumulation region exists in the

channel from the source to the drain. Figure 10.6(c) shows the
intermediate case in which the channel is partially depleted and
partially accumulated.

First, consider the depleted channel case indicated in Fig-
ure 10.6(a). A depletion region exists in the channel from the
source to the drain, when both VGD and VGS are between VON and
zero volts. In this region of operation, the conductance through
the entire channel is modeled using Eq. 10.29. Substituting Eq.
10.29 into the conductance integral equation, Eq. 10.13, yields
the drain current as,

ID = Z

L
σh

[(
1 + CS

CG

)
VDS − 2

3
VP

((
C2

S

C2
G

+ VGS

VP

) 3
2

−
(

C2
S

C2
G

+ VGD

VP

) 3
2
)]

, [10.31]

which is valid in the pre-pinchoff region of operation. If VGS

is held constant, the maximum drain current is reached when
VGD = VON. At this point, the channel is pinched off and satu-
ration occurs so that

ID = Z

L
σh

[(
1 + CS

CG

)
VDSAT − 2

3
VP

((
C2

S

C2
G

+ VGS

VP

) 3
2

−
(

C2
S

C2
G

+ VON

VP

) 3
2
)]

, [10.32]

where

VDS (VGD = VON) ≡ VDSAT = VGS − VON. [10.33]

As VGD is reduced below VON, or if the gate is held constant
as VDS is increased above VDSAT, ID does not increase. Equa-
tions 10.32 and 10.33 constitute current-voltage characteristics
describing an n-channel, depletion-mode TFT operating in chan-
nel depletion for the pre-pinch-off and post-pinch-off regions,
respectively.

Next, consider the accumulated-channel case shown in Figure
10.6(b). The channel near the source is accumulated when VGS >

0 V and the channel near the drain is accumulated when VGD >

0 V. Because accumulation occurs throughout the entire length
of channel, GLIN

D is calculated using Eq. 10.23. Substituting Eq.
10.23 into the conductance integral equation (Eq. 10.13) yields
the drain current as,

ID = Z

L

[
µCG

(
VGSVDS − V 2

DS

2

)
+ σhVDS

]
. [10.34]

Equation 10.35 is the pre-pinch-off current-voltage relationship
describing an n-channel, depletion-mode TFT operating in accu-
mulation along the entire channel length. Note that this equation
corresponds to the pre-pinch-off square-law model in parallel
with a resistor. The pre-pinch-off square-law portion represents
the accumulation channel current, whereas the parallel resistor
represents current through the bulk channel. Note that this ex-
pression is equivalent to the 3-layer model of section IV.A, if
the surface accumulation layer is ignored.
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130 D. HONG ET AL.

FIG. 10.6. Depletion-mode TFT cross-section and corresponding GLIN
D − VG plot showing three operating conditions: (a) the

channel has a depletion region extending from the source to the drain, (b) the channel has an accumulation region extending from
the source to the drain, and (c) the channel is depleted near the drain and is accumulated near the source. Note that the magnitude
of VGD and VGS with respect to VON and zero volts determine which operating region applies.

If the drain voltage is increased, such that VGD decreases be-
low 0 V, the channel near the drain is fully depleted, resulting
in the situation shown in Figure 10.6(c). Because both an accu-
mulation region and a depletion region exist along the length of
the channel, both Eq. 10.23 and Eq. 10.29 must be used to cal-
culate the channel conductance. Substituting both of these into
the conductance integral equation, Eq. 10.13, yields

ID =
∫ 0

VGD

GLIN
D (VG)

∣∣
ACCdVG+

∫ VGS

0
GLIN

D (VG)
∣∣
DEPLdVG .

[10.35]
Notice that this results in two integrals, one integral evaluating
GLIN

D for the accumulation region and one integral evaluating
GLIN

D for the depletion region. Evaluating these integrals leads

to

ID = IACC + IDEPL, [10.36]

where

IACC = ZµCG

2L
V 2

GS + Zhσ

L
VGS, [10.37]

and

IDEPL = Z

L
σh

[(
1 + CS

CG

)
(VDS − VGS)

−2

3
VP

(
C3

S

C3
G

−
(

C2
S

C2
G

+ VGD

VP

) 3
2
)]

. [10.38]

Decreasing VGD below VON again leads to a saturated ID which
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is calculated as

ID = IACC + IDEPL2, [10.39]

where

IDEPL2 = Z

L
σh

[(
1 + CS

CG

)
(VON)

−2

3
VP

(
C3

S

C3
G

−
(

C2
S

C2
G

+ VON

VP

) 3
2
)]

. [10.40]

Equations 10.37 and 10.40 constitute the pre-pinch-off and
post-pinch-off current-voltage characteristics describing an n-
channel, depletion-mode TFT operating in a partially depleted
and partially accumulated channel, as illustrated in Figure
10.6(c).

C. Discrete Trap Model Derivation
The discrete trap under consideration is assumed to be char-

acterized by its ionization energy, ET , capture cross-section, σn ,
and density, Nt .

If the density of filled traps is given by nt , the rate of con-
duction band trapping is given by v̄σn(Nt − nt )nc, where v̄ is
the average conduction band electron velocity, (Nt − nt ) is the
density of empty traps, and nc is the density of electrons present
in the conduction band. Also, the rate of electron emission from
this trap state to the conduction band is given by v̄σnnt n1, where
n1 is the conduction band electron density when the Fermi-level
is equal to the trap level. n1 is given by

n1 = Nce( −ET
kB T )

, [10.41]

where Nc is the effective density of states of the conduction band
and kB is Boltzmann’s constant. Thus, the net rate of change in
trap occupancy is given by

∂nt

∂t
= vσn(Nt − nt )nc − v̄σnnt n1. [10.42]

In steady-state, the rate of trap emission and capture are equal
so that

(Nt − nt )nc = nt n1. [10.43]

Solving for nt yields an explicit assessment of the steady-state
trap occupancy,

nt = nc Nt

nc + n1
. [10.44]

Recognizing that the total charge induced in the channel by the
application of a gate voltage is distributed into both conduction
band and trap states,

q(�nc + �nt ) = q[(nc + nt ) − (nco + nto)]

= CG

h
[VGS − V (y)], [10.45]

where nco and nto are the initial, zero-bias densities of free con-
duction band electrons and trapped electrons. Rearrangement of
Eq. 10.46 leads to

q(nc + nt ) = CG

h
[VGS − V (y) − VON], [10.46]

where VON = − qh
CG

(nco + nto).
Substitution of nt from Eq. 10.45 into Eq. 10.47 yields,

Vc(y) ≡ qnc(y)h

CG

= 1

2
[(VGS − V (y) − VON) − (Vt + V1)]

+ 1

2
{[(VGS − V (y) − VON) − (Vt + V1)]2

+ 4V1(VGS − V (y) − VON)}1/2, [10.47]

where Vt = q Nt h
CG

and V1 = qn1h
CG

.
For mathematical convenience, Eq. 10.49 can be rewritten as

Vc(y) = 1

2
[a − V (y)] + 1

2
{[a − V (y)]2 + c[b − V (y)]}1/2,

[10.48]

where, a = VGS − Vt − VON − V1, b = VGS − VON and c = 4V1.
Drift-dominated drain current is derived in a similar manner

as the ideal square-law derivation,19 beginning with

ID = h Znc(y)qµ
dV (y)

dy
. [10.49]

Substitution of nc(y) from Eq. 10.49 into Eq. 10.51, operating
on both sides by dy, integrating the left hand side of the equation
over the channel length and dividing both sides of the equation
by L leads to,

ID = Z

L
µCG

∫ VDS

0
Vc(y)dV (y). [10.50]

Substitution of Eq. 10.50 for Vc(y) into Eq. 10.52 and performing
the integration yields,

ID = Z

L
µCG

[
1

2
aVDS − 1

4
V 2

DS + 1

4

(
VDS − a − c

2

)
C1

+ ln

(
C2

C3

)
(Vt V1) + 1

4
(a2 + bc)1/2

(
a + c

2

)]
, [10.51]

where, C1 = [(a − VDS)2 + c(b − VDS)]1/2, C2 =
(−2a − c + 2VDS + 2C1), and C3 = [−2a−c+2 (a2 + bc)1/2].
Equation 10.53 constitutes the discrete trap model current-
voltage characteristic equation for the pre-pinch-off regime
of the TFT operation, whose independent variable constraint
equation are specified by

VGS ≥ VON andVDS ≤ VDSAT. [10.52]

The drain current expression for the saturation (post-pinch-off)
regime of TFT operation is then obtained by replacing VDS by
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VDSAT in Eq. 10.53 and requiring that VDS ≥ VDSAT. Explicitly
the post-pinch-off current-voltage expression is given by

IDSAT = Z

L
µCG

[
1

2
aVDSAT − 1

4
V 2

DSAT + 1

4

(
V 2

t − V 2
1

)
+ ln

(
4Vt

C3

)
(Vt V1) + 1

4
(a2 + bc)1/2

(
a + c

2

)]
, [10.53]

where the corresponding constraint equations are given by

VGS ≥ VON and VDS > VDSAT. [10.54]

Finally, the pinch-off voltage for the discrete trap model is given
by

VDSAT = VGS − VON. [10.55]
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